The densification and the structure evolution of the plasma activated sintered(PAS sintered)ZrB_(2)-ZrO_(2) composite via the ZrO_(2)-coated ZrB_(2) powder(ZrB_(2)@ZrO_(2))prepared by in situ passivation method were i...The densification and the structure evolution of the plasma activated sintered(PAS sintered)ZrB_(2)-ZrO_(2) composite via the ZrO_(2)-coated ZrB_(2) powder(ZrB_(2)@ZrO_(2))prepared by in situ passivation method were investigated.The composition and microstructure were characterized by XRD,Raman,SEM,and EDS techniques.The coated powder has excellent sintering performance.The relative density of the composite reaches above 90%at 1200℃,and the main sintering process occurs between ZrO_(2) particles.While at above 1500℃,the relative density reaches above 95%and the main sintering process occurs between ZrB_(2) and ZrO_(2) particles.With the increase of ZrO_(2) coating content,the structure of the sintered body changes from ZrB_(2) continuous network structure to island structure.When the content is 20%,an island structure is formed.Increasing the ZrO_(2) content further causes the overheating of ZrO_(2).Thus,the best sintering performance reaches when the coating content is 20wt%.展开更多
We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the...We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.展开更多
The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony fur...The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.展开更多
Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrang...Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.展开更多
基金Funded by the National Natural Science Fund of China(Nos.51272190,51521001)the 111 Project of China(B13035)+1 种基金the Major Projects of Technological Innovation of Hubei Province(2019AFA176)the National Key Research and Development Program of China(2017YFB0310400)。
文摘The densification and the structure evolution of the plasma activated sintered(PAS sintered)ZrB_(2)-ZrO_(2) composite via the ZrO_(2)-coated ZrB_(2) powder(ZrB_(2)@ZrO_(2))prepared by in situ passivation method were investigated.The composition and microstructure were characterized by XRD,Raman,SEM,and EDS techniques.The coated powder has excellent sintering performance.The relative density of the composite reaches above 90%at 1200℃,and the main sintering process occurs between ZrO_(2) particles.While at above 1500℃,the relative density reaches above 95%and the main sintering process occurs between ZrB_(2) and ZrO_(2) particles.With the increase of ZrO_(2) coating content,the structure of the sintered body changes from ZrB_(2) continuous network structure to island structure.When the content is 20%,an island structure is formed.Increasing the ZrO_(2) content further causes the overheating of ZrO_(2).Thus,the best sintering performance reaches when the coating content is 20wt%.
基金Funded by the National Natural Science Foundation of China(No.51472092)
文摘We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.
文摘The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.
基金supported by the National Natural Science Foundation of China (10972220, 11125211 and 11021262)973 Project(2012CB937500)
文摘Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.