An efficient chamber-induced activation method was applied for the preparation of holey graphene/cellulose nanofiber-based film with high specific surface area(SSA)and multiple channels through the graphene nanosheets...An efficient chamber-induced activation method was applied for the preparation of holey graphene/cellulose nanofiber-based film with high specific surface area(SSA)and multiple channels through the graphene nanosheets.With the cellulose nanofiber(CNF)simultaneously serving as“dispersing agent,”“spacer,”and“activating agent,”the graphene oxide(GO)nanosheets are perforated by the pyrolysis gas from CNF in the confined space inside the hybrid films,uniformly dispersed,and sandwiched between CNF networks with less agglomeration and restacking.Additionally,we have proved that H2O and H2 are primarily responsible for the activation and etching of GO/CNF film.As the CNF content increases,the mesoporosity of the activated reduced GO/CNF(A-RGO/CNF)film increases,and the graphene nanosheets show more nanopore perforations.Benefitting from the high SSA,high density,moderate mesoporosity,and abundant channels for ion diffusion through the graphene nanosheets,the A-RGO/CNF film exhibits the highest specific capacitance of 323(236)F g^(−1)(F cm^(−3))at 1Ag^(−1).For the A-RGO5/CNF5 film containing half CNF and half GO,an excellent comprehensive electrochemical performance including superior rate performance(208(160)F g^(−1)(F cm^(−3))at 60Ag^(−1))is exhibited.Moreover,the A-RGO5/CNF5 electrode in an all-solid-state flexible symmetric supercapacitor delivers a high specific capacitance of 250(193)F g^(−1)(F cm^(−3))at 1Ag^(−1).This study provides a novel idea for the preparation of holey graphene-based film for supercapacitor electrodes.The strategy of simultaneously employing CNF as“dispersing agent,”“spacer,”and“activating agent”also offers a new vision for the assembly of homogeneous nanohybrid material and the utilization of pyrolysis gas.展开更多
Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a no...Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.展开更多
Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to syn...Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system.展开更多
Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a...Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.展开更多
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,...As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.展开更多
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u...Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.展开更多
The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the supe...The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.展开更多
The oxygen evolution reaction(OER)is a half-reaction of water electrolysis,and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency.Due to their high OER activity,tran...The oxygen evolution reaction(OER)is a half-reaction of water electrolysis,and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency.Due to their high OER activity,transition metal-based nanomaterials have become potential low-cost substitutes for Ir/Ru-based OER electrocatalysts in an alkaline environment.Herein,holey Fe3O4-coupled Ni(OH)2 sheets(Ni(OH)2-Fe H-STs)were easily achieved by a simple mixed-cyanogel hydrolysis strategy.The two-dimensional(2D)Ni(OH)2-Fe H-STs with ca.1 nm thickness have a high specific surface area,abundant unsaturated coordination atoms,and numerous pores,which are highly favorable for electrocatalytic reactions.Meanwhile,the introduction of Fe improves the conductivity and regulates the electronic structure of Ni.Due to their special structural features and synergistic effect between the Fe and Ni atoms,Ni(OH)2-Fe H-STs with an optimal Ni/Fe ratio show excellent OER activity in a 1 M KOH solution,which significantly exceeds that of the commercial RuO2 nanoparticle electrocatalyst.Furthermore,Ni(OH)2-Fe H-STs can be grown on nickel foam(NF),and the resulting material exhibits enhanced OER activity,such as a small overpotential of 200 mV and a small Tafel slope of 56 mV dec−1,than that of Ni(OH)2-Fe H-STs without NF.展开更多
Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generatio...Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generation,is an important strategy to improve the production and selectivity of the C_(2)products.In this study,we determined that the local electric field can promote the C-C coupling reaction and enhance CO_(2)electroreduction to C_(2)products.First,finite-element simulations indicated that the high curvature of the Cu nanoneedles results in a large local electric field on their tips.Density functional theory(DFT)calculations proved that a large electric field can promote C-C coupling.Motivated by this prediction,we prepared a series of Cu catalysts with different curvatures.The Cu nanoneedles(NNs)exhibited the largest number of curvatures,followed by the Cu nanorods(NRs),and Cu nanoparticles(NPs).The Cu NNs contained the highest concentration of adsorbed K+,which resulted in the highest local electric field on the needles.CO adsorption sensor tests indicated that the Cu NNs exhibited the strongest CO adsorption ability,and in-situ Fourier-transform infrared spectroscopy(FTIR)showed the strongest*COCO and*CO signals for the Cu NNs.These experimental results demonstrate that high-curvature nanoneedles can induce a large local electric field,thus promoting C-C coupling.As a result,the Cu NNs show a maximum FEC_(2)of 44%for CO_(2)RR at a low potential(-0.6 V vs.RHE),which is approximately 2.2 times that of the Cu NPs.This work provides an effective strategy for enhancing the production of multi-carbon products during CO_(2)RR.展开更多
Lithium ion batteries(LIBs)have been widely used in portable and smart devices because of their high energy densities,long cycle life and environmental friendliness.In order to meet the evergrowing demand for human-be...Lithium ion batteries(LIBs)have been widely used in portable and smart devices because of their high energy densities,long cycle life and environmental friendliness.In order to meet the evergrowing demand for human-beings utilizing electronic devices,electric vehicles and energy storage grids.展开更多
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
The high power holey fiber is an efficient supercontinuum light source by using picosecond pulse,which is a less expensive laser source compared with low power and expensive femtosecond laser sources. In this paper, a...The high power holey fiber is an efficient supercontinuum light source by using picosecond pulse,which is a less expensive laser source compared with low power and expensive femtosecond laser sources. In this paper, a high power highly nonlinear holey fiber(HN-HF) with a low confinement loss is proposed for supercontinuum light sources. The finite difference method is used to calculate the different properties of the proposed HN-HF. High nonlinear coefficients are obtained at 1.06 μm, 1.31μm, and 1.55μm wavelengths with flattened chromatic dispersion and low confinement losses simultaneously. Moreover, numerical simulation results show that high power broad supercontinuum spectra with very short length of the proposed photonic crystal fiber are achieved.展开更多
In order to design birefringent holey fiber with beat-length independent of wavelength, an asymmetric structure is introduced to reduce its wavelength-sensitivity. The influence of structural parameters on the modal b...In order to design birefringent holey fiber with beat-length independent of wavelength, an asymmetric structure is introduced to reduce its wavelength-sensitivity. The influence of structural parameters on the modal birefringence is calculated and analyzed. After optimizing the parameters, a flat dispersion curve of beat-length is obtained. The beat-length changes from 89.8 mm to 91.0 mm in wavelength range from 1.1 μm, to 1.7μm, and its relative variation is 1.38%. If this fiber is made into zero-order quarter wave plate, the phase delay can be easily controlled in (90±1)°.展开更多
This paper proposes three kinds of tapered holey fibres with a multi-layer of holes whose pitch of air holes at the end of untapered and tapered are 5.8 μm and 1.8 μm. The central wavelength which locates in the ano...This paper proposes three kinds of tapered holey fibres with a multi-layer of holes whose pitch of air holes at the end of untapered and tapered are 5.8 μm and 1.8 μm. The central wavelength which locates in the anomalous dispersion region is 1.55 μm. An adaptive split-step Fourier method is numerically used to study the pulse propagation in tapered holey fibres. For the considered convex tapered holey fibre, at a wavelength of 1.55 μm, a compression factor of 136.7 can be achieved by initial width of 800 fs propagation through a length of 0.8 m. It demonstrates that in anomalous dispersion region, pulse can be compressed with the increase of nonlinearity coefficient and the decrease of dispersion coefficient.展开更多
The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in...The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in the frequency range from 100Hz to 1MHz with different Mn contents at different temperatures. The frequencyindependent tunability increases strongly with decreasing the temperature from 300 K to 150K. The tunability (-31%) in thin films (x = 0.005) at 150K is obtained and the temperature for the same tunability in ceramics is about 60 K lower than the present one. This tunability is comparable with that in one of ferroelectric Sr1-1.sxBixTiO3 thin films. Similarly, the well-defined P(E) hysteresis 10013 and 2Pr (1.2 μC/cm^2) can be obtained at 300 K in Sr1-xMnxTiO3 films with z = 0.005. Both the existence of electric dipole or poled micro domain introduced by the doped Mn2+ located in the off-center position at Sr sites and the strain between the thin film and the substrate are the origins of the tunable and polar behavior in Sr1-xMnxTiO3 films.展开更多
Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical ...Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.展开更多
The half-metallic Heusler alloy CO_(2)FeSi is an ideal material in spintronic devices due to its higher spin polarization,higher Curie temperature and lower damping parameters.In this work,the dynamic magnetism of CO_...The half-metallic Heusler alloy CO_(2)FeSi is an ideal material in spintronic devices due to its higher spin polarization,higher Curie temperature and lower damping parameters.In this work,the dynamic magnetism of CO_(2)FeSi is modulated by electric field and it is demonstrated that the charge-spin conversion efficiencyξis continuous and controllable by the electric field.We further find an extremely highξin ferromagnetic/ferroelectric(FM/FE)heterostructures,which could be ascribed to interfacial effect in FM/FE interface.Moreover,we investigate that the charge-spin conversion efficiency varies with the electric field in a butterfly-like behavior,which accords with the S–E curve of Pb(Mg_(1/3)Nb_(2/3))O_3-Pb_(0.7)Ti_(0.3)O_(3)(PMN-PT)and could be attributed to strain effect.The modulation of charge-spin conversion efficiency in FM/FE heterostructures via electric field presents a profound potential for next-generation spintronic devices and applications of current-induced magnetization switching.展开更多
基金funded by the Ministry of Business,Innovation and Employment Endeavour Fund of New Zealand(MAUX1801)supported by the China Postdoctoral Science Foundation(2021M692622).
文摘An efficient chamber-induced activation method was applied for the preparation of holey graphene/cellulose nanofiber-based film with high specific surface area(SSA)and multiple channels through the graphene nanosheets.With the cellulose nanofiber(CNF)simultaneously serving as“dispersing agent,”“spacer,”and“activating agent,”the graphene oxide(GO)nanosheets are perforated by the pyrolysis gas from CNF in the confined space inside the hybrid films,uniformly dispersed,and sandwiched between CNF networks with less agglomeration and restacking.Additionally,we have proved that H2O and H2 are primarily responsible for the activation and etching of GO/CNF film.As the CNF content increases,the mesoporosity of the activated reduced GO/CNF(A-RGO/CNF)film increases,and the graphene nanosheets show more nanopore perforations.Benefitting from the high SSA,high density,moderate mesoporosity,and abundant channels for ion diffusion through the graphene nanosheets,the A-RGO/CNF film exhibits the highest specific capacitance of 323(236)F g^(−1)(F cm^(−3))at 1Ag^(−1).For the A-RGO5/CNF5 film containing half CNF and half GO,an excellent comprehensive electrochemical performance including superior rate performance(208(160)F g^(−1)(F cm^(−3))at 60Ag^(−1))is exhibited.Moreover,the A-RGO5/CNF5 electrode in an all-solid-state flexible symmetric supercapacitor delivers a high specific capacitance of 250(193)F g^(−1)(F cm^(−3))at 1Ag^(−1).This study provides a novel idea for the preparation of holey graphene-based film for supercapacitor electrodes.The strategy of simultaneously employing CNF as“dispersing agent,”“spacer,”and“activating agent”also offers a new vision for the assembly of homogeneous nanohybrid material and the utilization of pyrolysis gas.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602)the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169)。
文摘Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.
基金sponsored by the National Natural Science Foundation of China(22272103)the Natural Science Foundation of Shaanxi Province(2020JZ-23,2019KJXX-021,and 2020JM269)+7 种基金the Key Research and Development Program of Shaanxi(2020SF-355)the Science and Technology Innovation Team of Shaanxi Province(2022TD-35)the University Engineering Research Center of Crystal Growth and Applications of Guangdong Province(2020GCZX005)the Special Innovative Projects of Guangdong Province(2020KTSCX125)the Shenzhen Stable Supporting Program(SZWD2021015)the Fundamental Research Funds for the Central Universities(GK202202001)the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials at Guangxi University(2021GXYSOF02)the 111 Project(B14041)。
文摘Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system.
基金Project supported by the Special Project for Research and Development in Key Areas of Guangdong Province,China (Grant No.2020B0303300001)the National Natural Science Foundation of China (Grant Nos.U21A20434,12074346,12074390,11835011,11804375,and 11804308)+2 种基金the Fund from the Key Laboratory of Guangzhou for Quantum Precision Measurement (Grant No.202201000010)the Science and Technology Projects in Guangzhou (Grant No.202201011727)the Nansha Senior Leading Talent Team Technology Project (Grant No.2021CXTD02)。
文摘Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.
基金supported by the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(MSIT)(RS2023-00235596)and ERC Center(2022R1A5A1033719)。
文摘As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2021QB055,ZR2023MB017,ZR2022JQ10)the National Natural Science Foundation of China(21901146,220781792,22274083)。
文摘Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.
文摘The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.
文摘The oxygen evolution reaction(OER)is a half-reaction of water electrolysis,and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency.Due to their high OER activity,transition metal-based nanomaterials have become potential low-cost substitutes for Ir/Ru-based OER electrocatalysts in an alkaline environment.Herein,holey Fe3O4-coupled Ni(OH)2 sheets(Ni(OH)2-Fe H-STs)were easily achieved by a simple mixed-cyanogel hydrolysis strategy.The two-dimensional(2D)Ni(OH)2-Fe H-STs with ca.1 nm thickness have a high specific surface area,abundant unsaturated coordination atoms,and numerous pores,which are highly favorable for electrocatalytic reactions.Meanwhile,the introduction of Fe improves the conductivity and regulates the electronic structure of Ni.Due to their special structural features and synergistic effect between the Fe and Ni atoms,Ni(OH)2-Fe H-STs with an optimal Ni/Fe ratio show excellent OER activity in a 1 M KOH solution,which significantly exceeds that of the commercial RuO2 nanoparticle electrocatalyst.Furthermore,Ni(OH)2-Fe H-STs can be grown on nickel foam(NF),and the resulting material exhibits enhanced OER activity,such as a small overpotential of 200 mV and a small Tafel slope of 56 mV dec−1,than that of Ni(OH)2-Fe H-STs without NF.
文摘Cu-based catalysts are the most promising candidates for electrochemical CO_(2)reduction(CO_(2)RR)to multi-carbon(C_(2))products.Optimizing the C-C coupling process,the rate-determining step for C_(2)product generation,is an important strategy to improve the production and selectivity of the C_(2)products.In this study,we determined that the local electric field can promote the C-C coupling reaction and enhance CO_(2)electroreduction to C_(2)products.First,finite-element simulations indicated that the high curvature of the Cu nanoneedles results in a large local electric field on their tips.Density functional theory(DFT)calculations proved that a large electric field can promote C-C coupling.Motivated by this prediction,we prepared a series of Cu catalysts with different curvatures.The Cu nanoneedles(NNs)exhibited the largest number of curvatures,followed by the Cu nanorods(NRs),and Cu nanoparticles(NPs).The Cu NNs contained the highest concentration of adsorbed K+,which resulted in the highest local electric field on the needles.CO adsorption sensor tests indicated that the Cu NNs exhibited the strongest CO adsorption ability,and in-situ Fourier-transform infrared spectroscopy(FTIR)showed the strongest*COCO and*CO signals for the Cu NNs.These experimental results demonstrate that high-curvature nanoneedles can induce a large local electric field,thus promoting C-C coupling.As a result,the Cu NNs show a maximum FEC_(2)of 44%for CO_(2)RR at a low potential(-0.6 V vs.RHE),which is approximately 2.2 times that of the Cu NPs.This work provides an effective strategy for enhancing the production of multi-carbon products during CO_(2)RR.
基金financial support from the“Young Talent Fellowship”program through South China University of Technologythe Fundamental Research Funds for the Central Universities(2018JQ06)。
文摘Lithium ion batteries(LIBs)have been widely used in portable and smart devices because of their high energy densities,long cycle life and environmental friendliness.In order to meet the evergrowing demand for human-beings utilizing electronic devices,electric vehicles and energy storage grids.
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
文摘The high power holey fiber is an efficient supercontinuum light source by using picosecond pulse,which is a less expensive laser source compared with low power and expensive femtosecond laser sources. In this paper, a high power highly nonlinear holey fiber(HN-HF) with a low confinement loss is proposed for supercontinuum light sources. The finite difference method is used to calculate the different properties of the proposed HN-HF. High nonlinear coefficients are obtained at 1.06 μm, 1.31μm, and 1.55μm wavelengths with flattened chromatic dispersion and low confinement losses simultaneously. Moreover, numerical simulation results show that high power broad supercontinuum spectra with very short length of the proposed photonic crystal fiber are achieved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60777031, 11074164)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘In order to design birefringent holey fiber with beat-length independent of wavelength, an asymmetric structure is introduced to reduce its wavelength-sensitivity. The influence of structural parameters on the modal birefringence is calculated and analyzed. After optimizing the parameters, a flat dispersion curve of beat-length is obtained. The beat-length changes from 89.8 mm to 91.0 mm in wavelength range from 1.1 μm, to 1.7μm, and its relative variation is 1.38%. If this fiber is made into zero-order quarter wave plate, the phase delay can be easily controlled in (90±1)°.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874145)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20091333110010)+1 种基金the Natural Science Foundation of Hebei Province of China (Grant No. F2009000481)the China Postdoctoral Science Foundation (Grant Nos. 20080440014 and 200902046)
文摘This paper proposes three kinds of tapered holey fibres with a multi-layer of holes whose pitch of air holes at the end of untapered and tapered are 5.8 μm and 1.8 μm. The central wavelength which locates in the anomalous dispersion region is 1.55 μm. An adaptive split-step Fourier method is numerically used to study the pulse propagation in tapered holey fibres. For the considered convex tapered holey fibre, at a wavelength of 1.55 μm, a compression factor of 136.7 can be achieved by initial width of 800 fs propagation through a length of 0.8 m. It demonstrates that in anomalous dispersion region, pulse can be compressed with the increase of nonlinearity coefficient and the decrease of dispersion coefficient.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51225201,61271078,and 51102133the National Basic Research Program of China under Grant No 2015CB921201+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities
文摘The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in the frequency range from 100Hz to 1MHz with different Mn contents at different temperatures. The frequencyindependent tunability increases strongly with decreasing the temperature from 300 K to 150K. The tunability (-31%) in thin films (x = 0.005) at 150K is obtained and the temperature for the same tunability in ceramics is about 60 K lower than the present one. This tunability is comparable with that in one of ferroelectric Sr1-1.sxBixTiO3 thin films. Similarly, the well-defined P(E) hysteresis 10013 and 2Pr (1.2 μC/cm^2) can be obtained at 300 K in Sr1-xMnxTiO3 films with z = 0.005. Both the existence of electric dipole or poled micro domain introduced by the doped Mn2+ located in the off-center position at Sr sites and the strain between the thin film and the substrate are the origins of the tunable and polar behavior in Sr1-xMnxTiO3 films.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374010 and 11434009the Fundamental Research Funds for the Central Universities
文摘Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.
基金the National Natural Science Foundation of China(Grant No.11974149)the Natural Science Foundation of Gansu Province(Grant No.21JR7RA472)。
文摘The half-metallic Heusler alloy CO_(2)FeSi is an ideal material in spintronic devices due to its higher spin polarization,higher Curie temperature and lower damping parameters.In this work,the dynamic magnetism of CO_(2)FeSi is modulated by electric field and it is demonstrated that the charge-spin conversion efficiencyξis continuous and controllable by the electric field.We further find an extremely highξin ferromagnetic/ferroelectric(FM/FE)heterostructures,which could be ascribed to interfacial effect in FM/FE interface.Moreover,we investigate that the charge-spin conversion efficiency varies with the electric field in a butterfly-like behavior,which accords with the S–E curve of Pb(Mg_(1/3)Nb_(2/3))O_3-Pb_(0.7)Ti_(0.3)O_(3)(PMN-PT)and could be attributed to strain effect.The modulation of charge-spin conversion efficiency in FM/FE heterostructures via electric field presents a profound potential for next-generation spintronic devices and applications of current-induced magnetization switching.