To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through...To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named...The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols.展开更多
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen...Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.展开更多
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a...Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.展开更多
Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size dist...Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size distribution, whereas metal encapsulation in the CNO structure is disadvantageous for the same. Furthermore, the hollow CNOs are also advantageous for the synthesis of GQDs with a yellow-green hybrid luminescence and long-ranged excitation wavelength (λex)-independent photoluminescent (PL) behavior, in which the λex upper limit was 480 nm. These features enable safe sensing and cell tracking applications with a longer excitation wavelength in the visible light region. The potential applications of the synthesized GQDs as fluorescent sensing probes for detecting Cu(II) ions and non-toxic cell imaging under visible light excitation have been demonstrated. This means that sensing and bioimaging can be accomplished in the natural environment with no need for UV excitation. This work provides a reference to researchers in tailoring CNO structures in terms of their inner space to synthesize GQDs with the desired luminescence behavior.展开更多
Carbon super-heterostructures with high nitrogen contents from the covalent hybrid precursors of covalent triazine frameworks(CTFs)and zeolitic imidazolic frameworks(ZIFs)are scarcely explored because of CTF's ord...Carbon super-heterostructures with high nitrogen contents from the covalent hybrid precursors of covalent triazine frameworks(CTFs)and zeolitic imidazolic frameworks(ZIFs)are scarcely explored because of CTF's ordered structure and toxic superacid that dissolves or destabilizes the metal nodes.To solve this problem,herein,we report a straightforward two-step pathway for the covalent hybridization of disordered CTF(d–CTF)–ZIF composites via preincorporation of an imidazole(IM)linker into ordered CTFs,followed by the imidazole-site-specific covalent growth of ZIFs.Direct carbonization of these synthesized d–CTF−IM−ZIF hybrids results in unique hollow carbon super-heterostructures with ultrahigh nitrogen content(>18.6%),high specific surface area(1663m^(2)g^(−1)),and beneficial trace metal(Co/Zn NPs)contents for promoting the redox pseudocapacitance.As proof of concept,the obtained carbon super-heterostructure(Co–Zn–NC_(SNH)–800)is used as a positive electrode in an asymmetric supercapacitor,demonstrating a remarkable energy density of 61Wh kg^(−1)and extraordinary cyclic stability of 97%retention after 30,000 cycles at the cell level.Our presynthetic modifications of CTF and their covalent hybridization with ZIF crystals pave the way toward new design strategies for synthesizing functional porous carbon materials for promising energy applications.展开更多
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda...Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.展开更多
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ...The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.展开更多
Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compound...Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction.展开更多
With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-do...With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-doped hollow porous carbon microspheres(NOHPC)anode has been prepared by a self-template method,which is consisted of a dense thin shell and a hollow porous spherical core.Excitingly,the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g^(−1)at 0.1 A g^(−1)and a capacity of 201.1 mAh g^(−1)at 5 A g^(−1)after 6000 cycles.In combination with ex situ characterizations and density functional theory calculations,the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+adsorption and intercalation capabilities,and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure.Meanwhile,the hollow porous activated carbon microspheres(HPAC)cathode with a high specific surface area(1472.65 m^(2)g^(−1))deriving from etching NOHPC with KOH,contributing to a high electrochemical adsorption capacity of 71.2 mAh g^(−1)at 1 A g^(−1).Notably,the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg^(−1)at a power density of 939.6 W kg^(−1)after 6000 consecutive charge-discharge cycles.展开更多
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy c...Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.展开更多
The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as templat...The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as template.The sampled particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption-desorption measurement,X-ray diffraction(XRD),Energy dispersive X-Ray spectroscopy(EDX),Fourier transform infrared spectroscopy(FTIR),Thermogravimetric analysis and differential scanning calorimetry(TGA-DSC),etc.It is shown that the assynthesized hollow strontium carbonate pompons with the size of about 2μm consist of flake-like particles under the optimal reaction conditions.The formation mechanism of hollow strontium carbonate pompons was preliminarily explored.展开更多
Ion conductive membranes(ICMs)with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices.However,it is extremely challenging to construct fast proton-selecti...Ion conductive membranes(ICMs)with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices.However,it is extremely challenging to construct fast proton-selective transport channels in ICMs.Herein,a membrane with highly conductive proton selectivity was fabricated by incorporating porous carbon sieving nanospheres with a hollow structure(HCSNs)in a polymer matrix.Due to the precise ion sieving ability of the microporous carbon shells and the fast proton transport through their accessible internal cavities,this advanced membrane presented a proton conductivity(0.084 S·cm^(-1))superior to those of a commercial Nation 212(N212)membrane(0.033S·cm^(-1))and a pure polymer membrane(0.049 S·cm^(-1)).The corresponding proton selectivity of the membrane(6.68×10^(5) S·min·cm^(-3))was found to be enhanced by about 5.9-fold and 4.3-fold,respectively,compared with those of the N212 membrane(1.13×10^(5) S·min·cm^(-3))and the pure membrane(1.56×10^(5) S·min·cm^(-3)).Low-field nuclear magnetic resonance(LF-NMR)clearly revealed the fast protonselective transport channels enabled by the HCSNs in the polymeric membrane.The proposed membrane exhibited an outstanding energy efficiency(EE)of 84%and long-term stability over 1400 cycles with a0.065%capacity decay per cycle at 120 mA·cm^(-2) in a typical vanadium flow battery(VFB)system.展开更多
Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large sp...Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.展开更多
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water...Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.展开更多
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well...Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.展开更多
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr...The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.展开更多
Flexible electrodes with superior mechanical and electrochemical properties are essential for flexible supercapacitors.A convenient and scalable colloidal film-assisted chemical vapor deposition(CF-CVD)method is devel...Flexible electrodes with superior mechanical and electrochemical properties are essential for flexible supercapacitors.A convenient and scalable colloidal film-assisted chemical vapor deposition(CF-CVD)method is developed for the one-step fabrication of the carbon microspheres films composed of carbon nano-onions(CMS-CNO films).The influence of growth conditions(such as growth temperature,time,and gas ratio)during CF-CVD process on the carbon structures and the growth mechanism of the CMS-CNO films have been investigated.By controlling the growth conditions,the controllable preparation of CMS-CNO films is realized.Such binder-free films can be used for the assembly of flexible supercapacitors,and unique architecture can achieve excellent performance.Benefitting from the composite of nano-micro zero dimensional structures,the performance of the film in supercapacitors is remarkably improved.At the current density of 5 mA cm^(-2),the area-specific capacity can be 903 mF cm^(-2).When the current density is increased to 500 mA cm^(-2),the area-specific capacity can be increased to 729 mF cm^(-2).This simple and low-cost preparation process and the superb electrochemical performance suggest great potential applications of CMS-CNO films in flexible supercapacitors.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low spe...Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.展开更多
基金financially supported by the National Natural Science Foundation of China(22379056,52102260)the Project funded by China Postdoctoral Science Foundation(2022M711545)the Carbon Peak and Carbon Neutrality Project(Breakthrough for Industry Prospect and Key Technologies)of Zhenjiang City(CG2023003)。
文摘To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金the National Key Research and Development Program(2021YFC3001103)the National Natural Science Foundation(22278209,22178165,21921006,22208149)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20211262,BK20220354)a project funded by the priority academic program development of Jiangsu higher education institutions(PAPD)of China。
文摘The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols.
基金supported by the National Natural Science Foundation of China(No.52374350)China Postdoctoral Science Foundation(Nos.2020M680347 and 2021T140051)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-045A1)。
文摘Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
文摘Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.
文摘Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size distribution, whereas metal encapsulation in the CNO structure is disadvantageous for the same. Furthermore, the hollow CNOs are also advantageous for the synthesis of GQDs with a yellow-green hybrid luminescence and long-ranged excitation wavelength (λex)-independent photoluminescent (PL) behavior, in which the λex upper limit was 480 nm. These features enable safe sensing and cell tracking applications with a longer excitation wavelength in the visible light region. The potential applications of the synthesized GQDs as fluorescent sensing probes for detecting Cu(II) ions and non-toxic cell imaging under visible light excitation have been demonstrated. This means that sensing and bioimaging can be accomplished in the natural environment with no need for UV excitation. This work provides a reference to researchers in tailoring CNO structures in terms of their inner space to synthesize GQDs with the desired luminescence behavior.
基金Ministry of Trade,Industry&Energy of Korea,Grant/Award Number:RS‐2022‐00155717National Research Foundation of Korea,Grant/Award Numbers:2020H1D3A1A04081472,2022M3J1A1054323。
文摘Carbon super-heterostructures with high nitrogen contents from the covalent hybrid precursors of covalent triazine frameworks(CTFs)and zeolitic imidazolic frameworks(ZIFs)are scarcely explored because of CTF's ordered structure and toxic superacid that dissolves or destabilizes the metal nodes.To solve this problem,herein,we report a straightforward two-step pathway for the covalent hybridization of disordered CTF(d–CTF)–ZIF composites via preincorporation of an imidazole(IM)linker into ordered CTFs,followed by the imidazole-site-specific covalent growth of ZIFs.Direct carbonization of these synthesized d–CTF−IM−ZIF hybrids results in unique hollow carbon super-heterostructures with ultrahigh nitrogen content(>18.6%),high specific surface area(1663m^(2)g^(−1)),and beneficial trace metal(Co/Zn NPs)contents for promoting the redox pseudocapacitance.As proof of concept,the obtained carbon super-heterostructure(Co–Zn–NC_(SNH)–800)is used as a positive electrode in an asymmetric supercapacitor,demonstrating a remarkable energy density of 61Wh kg^(−1)and extraordinary cyclic stability of 97%retention after 30,000 cycles at the cell level.Our presynthetic modifications of CTF and their covalent hybridization with ZIF crystals pave the way toward new design strategies for synthesizing functional porous carbon materials for promising energy applications.
基金financially supported by the Shenzhen Science and Technology Program(JCYJ20220530141012028),ChinaThe National Natural Science Foundation of China(22005178),China+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01),ChianThe fellowship of China Postdoctoral Science Foundation(2022M722333),Chianthe Jiangsu Funding Program for Excellent Postdoctoral Talent,Chian。
文摘Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.
基金financially supported by the National Natural Science Foundation of China (22209057)the Guangdong Basic and Applied Basic Research Foundation (2021A1515010362)+1 种基金the Guangzhou Basic and Applied Basic Research Foundation (202102020995)the Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications (2020B121201005)。
文摘Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction.
基金supported by the National Natural Science Foundation of China(Nos.21701163,21671181,21831006,and 22075268)the Fundamental Research Funds for the Central Universities(No.WK5290000003)Innovation Key Fund Project of University of Science and Technology of China(YD2060002023).
文摘With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-doped hollow porous carbon microspheres(NOHPC)anode has been prepared by a self-template method,which is consisted of a dense thin shell and a hollow porous spherical core.Excitingly,the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g^(−1)at 0.1 A g^(−1)and a capacity of 201.1 mAh g^(−1)at 5 A g^(−1)after 6000 cycles.In combination with ex situ characterizations and density functional theory calculations,the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+adsorption and intercalation capabilities,and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure.Meanwhile,the hollow porous activated carbon microspheres(HPAC)cathode with a high specific surface area(1472.65 m^(2)g^(−1))deriving from etching NOHPC with KOH,contributing to a high electrochemical adsorption capacity of 71.2 mAh g^(−1)at 1 A g^(−1).Notably,the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg^(−1)at a power density of 939.6 W kg^(−1)after 6000 consecutive charge-discharge cycles.
基金supported by the National Natural Science Foundation of China(51272173,51002188)the National Basic Research Program of China(2010CB934703)Tianjin Municipal Science and Technology Commission(12ZCZDGX00800)
文摘Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.
基金Funded by the National Natural Science Foundation of China(No.22002143)the Natural Science Foundation of Shanxi Province of China(No.201901D211223)the Postgraduate Students Scientific Research Project of North University of China(No.20201766)。
文摘The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as template.The sampled particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption-desorption measurement,X-ray diffraction(XRD),Energy dispersive X-Ray spectroscopy(EDX),Fourier transform infrared spectroscopy(FTIR),Thermogravimetric analysis and differential scanning calorimetry(TGA-DSC),etc.It is shown that the assynthesized hollow strontium carbonate pompons with the size of about 2μm consist of flake-like particles under the optimal reaction conditions.The formation mechanism of hollow strontium carbonate pompons was preliminarily explored.
基金the support from the National Key Research and Development Program of China(2021YFB3801301)the National Natural Science Foundation of China(22075076,21908098,and 21908054)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Ion conductive membranes(ICMs)with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices.However,it is extremely challenging to construct fast proton-selective transport channels in ICMs.Herein,a membrane with highly conductive proton selectivity was fabricated by incorporating porous carbon sieving nanospheres with a hollow structure(HCSNs)in a polymer matrix.Due to the precise ion sieving ability of the microporous carbon shells and the fast proton transport through their accessible internal cavities,this advanced membrane presented a proton conductivity(0.084 S·cm^(-1))superior to those of a commercial Nation 212(N212)membrane(0.033S·cm^(-1))and a pure polymer membrane(0.049 S·cm^(-1)).The corresponding proton selectivity of the membrane(6.68×10^(5) S·min·cm^(-3))was found to be enhanced by about 5.9-fold and 4.3-fold,respectively,compared with those of the N212 membrane(1.13×10^(5) S·min·cm^(-3))and the pure membrane(1.56×10^(5) S·min·cm^(-3)).Low-field nuclear magnetic resonance(LF-NMR)clearly revealed the fast protonselective transport channels enabled by the HCSNs in the polymeric membrane.The proposed membrane exhibited an outstanding energy efficiency(EE)of 84%and long-term stability over 1400 cycles with a0.065%capacity decay per cycle at 120 mA·cm^(-2) in a typical vanadium flow battery(VFB)system.
基金supported by Jinan Mingzhu Co., Ltd (HX20200364)。
文摘Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.
基金the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218,U22A20145)the Jinan Independent Innovative Team(2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)the Science and Technology Program of University of Jinan(XKY2119).
文摘Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.
基金the support from the Zhejiang Provincial Natural Science Foundation (No.LR22E070001),the National Natural Science Foundation of China (Nos.12275239 and 11975205)the Guangdong Basic and Applied Basic Research Foundation (No.2020B1515120048).
文摘Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.
基金National Research Foundation,Grant/Award Numbers:NRF‐2018R1A5A1025594,NRF‐2022M3J1A1062644。
文摘The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.
基金the Tianjin Science and Technology Project(18PTZWHZ000,2019JCQNJC05600)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2019KJ092)the Doctor Foundation(043135202-XB1709)of Tianjin Normal University.
文摘Flexible electrodes with superior mechanical and electrochemical properties are essential for flexible supercapacitors.A convenient and scalable colloidal film-assisted chemical vapor deposition(CF-CVD)method is developed for the one-step fabrication of the carbon microspheres films composed of carbon nano-onions(CMS-CNO films).The influence of growth conditions(such as growth temperature,time,and gas ratio)during CF-CVD process on the carbon structures and the growth mechanism of the CMS-CNO films have been investigated.By controlling the growth conditions,the controllable preparation of CMS-CNO films is realized.Such binder-free films can be used for the assembly of flexible supercapacitors,and unique architecture can achieve excellent performance.Benefitting from the composite of nano-micro zero dimensional structures,the performance of the film in supercapacitors is remarkably improved.At the current density of 5 mA cm^(-2),the area-specific capacity can be 903 mF cm^(-2).When the current density is increased to 500 mA cm^(-2),the area-specific capacity can be increased to 729 mF cm^(-2).This simple and low-cost preparation process and the superb electrochemical performance suggest great potential applications of CMS-CNO films in flexible supercapacitors.
文摘Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.