Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with th...Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.展开更多
The coupling region of a Hall thruster with a hollow cathode is the region between the cathode and the thruster plume.The characteristics of plasma in that region are complicated and strongly associated with the thrus...The coupling region of a Hall thruster with a hollow cathode is the region between the cathode and the thruster plume.The characteristics of plasma in that region are complicated and strongly associated with the thruster working conditions and the cathode position.In this paper,a laboratory 100 W class magnetically shielded Hall thruster was coupled with a hollow cathode.Optical imaging and electrostatic probe were employed to monitor and scan the plasma plume.Plume characteristics in the coupling region in non-self-sustained mode and self-sustained mode were compared.Evolution of the coupling plume with the cathode position was studied.Experiments show that,when turning the thruster into self-sustained mode or moving the cathode further away axially,the discharge current can be reduced by 6.4–10.6%restraining the electron current and improving ionization.In particular,when the cathode is moved further,the electron conduction near the channel walls is suppressed.The electron current is reduced by 27.4%and the ion beam current is increased by 7%.Overall,this work shows that the working mode of the thruster and the position of the cathode greatly affect the coupling plasma plume.Both play an important role in improving the utilizations of propellant and current.展开更多
Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structur...Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter.The results of the two methods indicated that the highest plasma density and electron temperature,which improved significantly in the orifice region,were located in the discharge region of the hollow cathode.The magnitude of plasma density was about 10^21m^-3in the emitter and orifice regions,as obtained by numerical calculations,but decreased exponentially in the plume region with the distance from the orifice exit.Meanwhile,compared to the emitter region,the electron temperature and current improved by about 36%in the orifice region.The hollow cathode performance test results were in good agreement with the numerical calculation results,which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current.The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.展开更多
基金supported by National Natural Science Foundation of China (No. 50676026)
文摘Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.
基金supported by the National Natural Science Foundation of China(No.11872093)。
文摘The coupling region of a Hall thruster with a hollow cathode is the region between the cathode and the thruster plume.The characteristics of plasma in that region are complicated and strongly associated with the thruster working conditions and the cathode position.In this paper,a laboratory 100 W class magnetically shielded Hall thruster was coupled with a hollow cathode.Optical imaging and electrostatic probe were employed to monitor and scan the plasma plume.Plume characteristics in the coupling region in non-self-sustained mode and self-sustained mode were compared.Evolution of the coupling plume with the cathode position was studied.Experiments show that,when turning the thruster into self-sustained mode or moving the cathode further away axially,the discharge current can be reduced by 6.4–10.6%restraining the electron current and improving ionization.In particular,when the cathode is moved further,the electron conduction near the channel walls is suppressed.The electron current is reduced by 27.4%and the ion beam current is increased by 7%.Overall,this work shows that the working mode of the thruster and the position of the cathode greatly affect the coupling plasma plume.Both play an important role in improving the utilizations of propellant and current.
基金supported by the National Key Laboratory Fund of Science and Technology on Vacuum Technology & Physics(Grant No.6142207030103)
文摘Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter.The results of the two methods indicated that the highest plasma density and electron temperature,which improved significantly in the orifice region,were located in the discharge region of the hollow cathode.The magnitude of plasma density was about 10^21m^-3in the emitter and orifice regions,as obtained by numerical calculations,but decreased exponentially in the plume region with the distance from the orifice exit.Meanwhile,compared to the emitter region,the electron temperature and current improved by about 36%in the orifice region.The hollow cathode performance test results were in good agreement with the numerical calculation results,which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current.The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.