Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,...Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.展开更多
A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately...A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.展开更多
Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-...Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester(PC-88A) dissolved in kerosene,has been studied for the extraction of Sm^(3+).Many factors including pH value, volume ratio of membrane solution to stripping solution(OAV) and carrier concentration on Sm^(3+) extraction were investigated. Experimental results indicate that the optimum extraction conditions of Sm^(3+) were obtained as that PC-88A concentration was 0.120 mol/L,and OAV was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm^(3+) concentration was 1.20×10^(-4) mol/L,the extraction percentage of Sm^(3+) was up to 92.8%in 160 min.展开更多
基金supported by the Higher education commission of Pakistan(NRPU No.20-3925/R&D/NRPU/HEC/2014)PAK-US science and technology cooperation(Pak-US No6-4/PAK-US/HEC/2015/04)Pakistan science foundation joint research projects with MSRT,Iran(No.PSF-MSRT/Env/KP-AWKUM)。
文摘Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.
文摘A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.
基金financially supported by the National Natural Science Foundation of China for Young Scientists(Nos. 51109197 and 51009126)the Action Plan for the Development of Western China of the Chinese Academy of Sciences (No.KZCX2-XB2-13)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KSCX2-YW-N -003)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology(Nos.602-210805 and 602-210804)
文摘Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester(PC-88A) dissolved in kerosene,has been studied for the extraction of Sm^(3+).Many factors including pH value, volume ratio of membrane solution to stripping solution(OAV) and carrier concentration on Sm^(3+) extraction were investigated. Experimental results indicate that the optimum extraction conditions of Sm^(3+) were obtained as that PC-88A concentration was 0.120 mol/L,and OAV was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm^(3+) concentration was 1.20×10^(-4) mol/L,the extraction percentage of Sm^(3+) was up to 92.8%in 160 min.