The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamox...The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamoxifen (TAM) in biological fluids including human urine and plasma. The drug was extracted from a 15 mL aqueous sample (source phase;SP) into an organic phase impregnated in the pores of the hollow fiber (membrane phase;MP) followed by the back-extraction into a second aqueous solution (receiving phase;RP) located in the lumen of the hollow fiber. The effects of several factors such as the nature of organic solvent, compositions of SP and RP solutions, extraction time, ionic strength and stirring rate on the extraction efficiency were examined and optimized. An enrichment factor of 360 along with substantial sample clean up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 1 - 500 ng?mL–1 and the limit of detection was found to be 0.5 ng?mL–1 in aqueous medium. A reasonable relative recovery (≥89%) and satisfactory intra-assay (3.7% - 4.2%, n = 3) and inter-assay (7.5% - 7.8%, n = 3) precision illustrated good performance of the analytical procedure in spiked human urine and plasma samples.展开更多
A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmet...A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmetic products. A canular extractor was assembled by mounting a hollow fiber inside an external tube with a tee-connector. The organic solvent was immobilized into the fiber to form a liquid membrane as the acceptor phase. The sample was continuously injected into the extractor and the UV filters were extracted from the aqueous sample into organic acceptor phase. The main parameters affecting HF-LPME including extraction solvent, sample volume, sample flow rate, pH values and ionic strength were investigated. Toluene has been verified to be suitable as the acceptor phase. Under the optimized HF-LPME conditions, the enrichment factors of five UV filters varying from 24 to 57 were achieved. The limits of detection for the five UV filters were in the range of 1-100 μg L-1 .The relative standard deviations (RSDs) of HF-LPME and HPLC analysis were lower than 5.2%. The proposed method has been successfully applied to the analysis of the varied cosmetic products.展开更多
A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electr...A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electrokinodc chromatography was developed. The calibration curve was linear over the range of 20-200 ng mL^-1 for both strychnine and brucine in human urine sample. The detection limits (S/N = 3:1) for strychnine and brucine were 1 ng mL^-1 and 2 ng mL^-1, respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine samples.展开更多
Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,...Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.展开更多
A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately...A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.展开更多
文摘The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamoxifen (TAM) in biological fluids including human urine and plasma. The drug was extracted from a 15 mL aqueous sample (source phase;SP) into an organic phase impregnated in the pores of the hollow fiber (membrane phase;MP) followed by the back-extraction into a second aqueous solution (receiving phase;RP) located in the lumen of the hollow fiber. The effects of several factors such as the nature of organic solvent, compositions of SP and RP solutions, extraction time, ionic strength and stirring rate on the extraction efficiency were examined and optimized. An enrichment factor of 360 along with substantial sample clean up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 1 - 500 ng?mL–1 and the limit of detection was found to be 0.5 ng?mL–1 in aqueous medium. A reasonable relative recovery (≥89%) and satisfactory intra-assay (3.7% - 4.2%, n = 3) and inter-assay (7.5% - 7.8%, n = 3) precision illustrated good performance of the analytical procedure in spiked human urine and plasma samples.
基金supported by the National Natural Science Foundation of China (90813015 & 20935002)
文摘A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmetic products. A canular extractor was assembled by mounting a hollow fiber inside an external tube with a tee-connector. The organic solvent was immobilized into the fiber to form a liquid membrane as the acceptor phase. The sample was continuously injected into the extractor and the UV filters were extracted from the aqueous sample into organic acceptor phase. The main parameters affecting HF-LPME including extraction solvent, sample volume, sample flow rate, pH values and ionic strength were investigated. Toluene has been verified to be suitable as the acceptor phase. Under the optimized HF-LPME conditions, the enrichment factors of five UV filters varying from 24 to 57 were achieved. The limits of detection for the five UV filters were in the range of 1-100 μg L-1 .The relative standard deviations (RSDs) of HF-LPME and HPLC analysis were lower than 5.2%. The proposed method has been successfully applied to the analysis of the varied cosmetic products.
基金This work was supported both by the Natural Science Foundation of Hebei Province(B2006000413)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry.
文摘A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electrokinodc chromatography was developed. The calibration curve was linear over the range of 20-200 ng mL^-1 for both strychnine and brucine in human urine sample. The detection limits (S/N = 3:1) for strychnine and brucine were 1 ng mL^-1 and 2 ng mL^-1, respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine samples.
基金supported by the Higher education commission of Pakistan(NRPU No.20-3925/R&D/NRPU/HEC/2014)PAK-US science and technology cooperation(Pak-US No6-4/PAK-US/HEC/2015/04)Pakistan science foundation joint research projects with MSRT,Iran(No.PSF-MSRT/Env/KP-AWKUM)。
文摘Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.
文摘A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.