Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,...Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.展开更多
A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately...A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.展开更多
The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamox...The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamoxifen (TAM) in biological fluids including human urine and plasma. The drug was extracted from a 15 mL aqueous sample (source phase;SP) into an organic phase impregnated in the pores of the hollow fiber (membrane phase;MP) followed by the back-extraction into a second aqueous solution (receiving phase;RP) located in the lumen of the hollow fiber. The effects of several factors such as the nature of organic solvent, compositions of SP and RP solutions, extraction time, ionic strength and stirring rate on the extraction efficiency were examined and optimized. An enrichment factor of 360 along with substantial sample clean up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 1 - 500 ng?mL–1 and the limit of detection was found to be 0.5 ng?mL–1 in aqueous medium. A reasonable relative recovery (≥89%) and satisfactory intra-assay (3.7% - 4.2%, n = 3) and inter-assay (7.5% - 7.8%, n = 3) precision illustrated good performance of the analytical procedure in spiked human urine and plasma samples.展开更多
A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electr...A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electrokinodc chromatography was developed. The calibration curve was linear over the range of 20-200 ng mL^-1 for both strychnine and brucine in human urine sample. The detection limits (S/N = 3:1) for strychnine and brucine were 1 ng mL^-1 and 2 ng mL^-1, respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine samples.展开更多
Hollow fibre cell fishing with HPLC (HFCF-HPLC) based on the human ovarian cancer cell line SKOV-3, human renal tubular cell line ACHN or hepatoma cell line HepG-2 was employed to screen active groups of coumarin and ...Hollow fibre cell fishing with HPLC (HFCF-HPLC) based on the human ovarian cancer cell line SKOV-3, human renal tubular cell line ACHN or hepatoma cell line HepG-2 was employed to screen active groups of coumarin and volatile oil in Radix angelicae sinensis, Radix angelicae dahuricae and Fructus citri sarcodactylis. Simultaneously, hollow fibre liquid phase microextraction with HPLC (HFLPME-HPLC) was conducted to enrich and determine the contents of active components in the same sample solution. Before application, for HFCF-HPLC, cells growth states and survival rates on the fibre, effect of ethanol concentration in the extract of samples on cell survival rates, non-specific binding between fibre active centres and the target components, positive and negative controls and repeatabilities were validated;for HFLPME, extraction solvent, sample phase pH, agitation speed, extraction time and sample phase volume were investigated. Many active components were screened from three medicines. Some of them, such as scoparone, psoralen, bergapten, oxypeucedanin, imperatorin, ligustilide, were identified by MS. The target fishing factors of active components and the cell apoptosis rates of three cells under the medicines effect were researched. The binding sites of active groups on HepG-2 cells were preliminarily determined. The results demonstrated that HFCF-HPLC, coupled with HFLPME-HPLC, is a simple and universal approach to find bioactive components at the cellular level, determine their content and research traditional Chinese medicines (TCMs) entirety effect of multi-component and multi-target. The approach may provide us a new and good solution to clarify the material basis of anti-cancer effect and conduct personalized quality control for the components associated with efficacy in TCMs.展开更多
Separation and recovery of 152+154Eu and 90Sr from radioactive waste using tracer concentration from active material from waste tank in the ET-RR1 Egypt via hollow fiber supported liquid membrane (HFSLM) were achieved...Separation and recovery of 152+154Eu and 90Sr from radioactive waste using tracer concentration from active material from waste tank in the ET-RR1 Egypt via hollow fiber supported liquid membrane (HFSLM) were achieved. The Polypropylene was used as supporter to carrier 0.5M Cyanex301/kerosene (bis(2,4,4-trimethylpentyl)dithiophosphinic acid and 0.1MEDTA as stripping of 152+154Eu and 90Sr ions from nitrate medium at pH ~3.6. The separation factor was found to be ~4 for 152+154Eu over 90Sr. The aqueous feed of mass transfer coefficient (ki) and the organic mass transfer coefficient (km) were calculated to be (1.52 and 4.5) × 10﹣2cm/s, respectively. In addition, the mass transfer modeling was performed and the validity of the developed model from experimental data was found to join in well with the theoretical values when the Cyanex301 concentration is higher than 1% (v/v). The number of cycles evaluated for complete separation of 152+154Eu and 90Sr is five cycles.展开更多
A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmet...A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmetic products. A canular extractor was assembled by mounting a hollow fiber inside an external tube with a tee-connector. The organic solvent was immobilized into the fiber to form a liquid membrane as the acceptor phase. The sample was continuously injected into the extractor and the UV filters were extracted from the aqueous sample into organic acceptor phase. The main parameters affecting HF-LPME including extraction solvent, sample volume, sample flow rate, pH values and ionic strength were investigated. Toluene has been verified to be suitable as the acceptor phase. Under the optimized HF-LPME conditions, the enrichment factors of five UV filters varying from 24 to 57 were achieved. The limits of detection for the five UV filters were in the range of 1-100 μg L-1 .The relative standard deviations (RSDs) of HF-LPME and HPLC analysis were lower than 5.2%. The proposed method has been successfully applied to the analysis of the varied cosmetic products.展开更多
The separation of Sm(III) through stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HC1 solution as the stripping s...The separation of Sm(III) through stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HC1 solution as the stripping solution and membrane solution of di(2-ethylhexyl) phosphoric acid (p204) dissolved in kerosene, has been studied. A set of factors were studied, including pH value, initial concentration of Sm(III) and different ionic strength of feed phase, volume ratio of membrane solution and stripping solution (O/W), HC1 concentration, carrier concentration, different stripping agents of dispersion phase on Sm(III) separation. Experimental results indicate that the optimum separa- tion conditions of Sm(III) were obtained as that HC1 concentration was 4.00 tool/L, p204 concentration was 0.150 mol/L, and volume ratio of membrane solution and stripping solution (O/W) was 1.00 in the dispersion phase, and pH value was 4.60 in the feed phase. Ionic strength had no obvious effect on separation of Sm(III). When initial Sm(III) concentration was 1.00 × 10^-4 mol/L, the separation rate of Sm(III) was up to 93.5% in 85 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The modeled results were in good agreement with the experiment data.展开更多
Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-...Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester(PC-88A) dissolved in kerosene,has been studied for the extraction of Sm^(3+).Many factors including pH value, volume ratio of membrane solution to stripping solution(OAV) and carrier concentration on Sm^(3+) extraction were investigated. Experimental results indicate that the optimum extraction conditions of Sm^(3+) were obtained as that PC-88A concentration was 0.120 mol/L,and OAV was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm^(3+) concentration was 1.20×10^(-4) mol/L,the extraction percentage of Sm^(3+) was up to 92.8%in 160 min.展开更多
基金supported by the Higher education commission of Pakistan(NRPU No.20-3925/R&D/NRPU/HEC/2014)PAK-US science and technology cooperation(Pak-US No6-4/PAK-US/HEC/2015/04)Pakistan science foundation joint research projects with MSRT,Iran(No.PSF-MSRT/Env/KP-AWKUM)。
文摘Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.
文摘A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.
文摘The applicability of hollow fiber liquid-phase microextraction (HF-LPME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was evaluated for the extraction and determination of tamoxifen (TAM) in biological fluids including human urine and plasma. The drug was extracted from a 15 mL aqueous sample (source phase;SP) into an organic phase impregnated in the pores of the hollow fiber (membrane phase;MP) followed by the back-extraction into a second aqueous solution (receiving phase;RP) located in the lumen of the hollow fiber. The effects of several factors such as the nature of organic solvent, compositions of SP and RP solutions, extraction time, ionic strength and stirring rate on the extraction efficiency were examined and optimized. An enrichment factor of 360 along with substantial sample clean up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 1 - 500 ng?mL–1 and the limit of detection was found to be 0.5 ng?mL–1 in aqueous medium. A reasonable relative recovery (≥89%) and satisfactory intra-assay (3.7% - 4.2%, n = 3) and inter-assay (7.5% - 7.8%, n = 3) precision illustrated good performance of the analytical procedure in spiked human urine and plasma samples.
基金This work was supported both by the Natural Science Foundation of Hebei Province(B2006000413)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry.
文摘A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextxaodon (LPME) based on porous polypropylene hollow fibers in combination with on-line sweeping in micellar electrokinodc chromatography was developed. The calibration curve was linear over the range of 20-200 ng mL^-1 for both strychnine and brucine in human urine sample. The detection limits (S/N = 3:1) for strychnine and brucine were 1 ng mL^-1 and 2 ng mL^-1, respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine samples.
文摘Hollow fibre cell fishing with HPLC (HFCF-HPLC) based on the human ovarian cancer cell line SKOV-3, human renal tubular cell line ACHN or hepatoma cell line HepG-2 was employed to screen active groups of coumarin and volatile oil in Radix angelicae sinensis, Radix angelicae dahuricae and Fructus citri sarcodactylis. Simultaneously, hollow fibre liquid phase microextraction with HPLC (HFLPME-HPLC) was conducted to enrich and determine the contents of active components in the same sample solution. Before application, for HFCF-HPLC, cells growth states and survival rates on the fibre, effect of ethanol concentration in the extract of samples on cell survival rates, non-specific binding between fibre active centres and the target components, positive and negative controls and repeatabilities were validated;for HFLPME, extraction solvent, sample phase pH, agitation speed, extraction time and sample phase volume were investigated. Many active components were screened from three medicines. Some of them, such as scoparone, psoralen, bergapten, oxypeucedanin, imperatorin, ligustilide, were identified by MS. The target fishing factors of active components and the cell apoptosis rates of three cells under the medicines effect were researched. The binding sites of active groups on HepG-2 cells were preliminarily determined. The results demonstrated that HFCF-HPLC, coupled with HFLPME-HPLC, is a simple and universal approach to find bioactive components at the cellular level, determine their content and research traditional Chinese medicines (TCMs) entirety effect of multi-component and multi-target. The approach may provide us a new and good solution to clarify the material basis of anti-cancer effect and conduct personalized quality control for the components associated with efficacy in TCMs.
文摘Separation and recovery of 152+154Eu and 90Sr from radioactive waste using tracer concentration from active material from waste tank in the ET-RR1 Egypt via hollow fiber supported liquid membrane (HFSLM) were achieved. The Polypropylene was used as supporter to carrier 0.5M Cyanex301/kerosene (bis(2,4,4-trimethylpentyl)dithiophosphinic acid and 0.1MEDTA as stripping of 152+154Eu and 90Sr ions from nitrate medium at pH ~3.6. The separation factor was found to be ~4 for 152+154Eu over 90Sr. The aqueous feed of mass transfer coefficient (ki) and the organic mass transfer coefficient (km) were calculated to be (1.52 and 4.5) × 10﹣2cm/s, respectively. In addition, the mass transfer modeling was performed and the validity of the developed model from experimental data was found to join in well with the theoretical values when the Cyanex301 concentration is higher than 1% (v/v). The number of cycles evaluated for complete separation of 152+154Eu and 90Sr is five cycles.
基金supported by the National Natural Science Foundation of China (90813015 & 20935002)
文摘A simple method based on hollow fiber liquid-phase microextraction (HF-LPME) followed by high performance liquid chro-matography (HPLC) analysis was successfully developed for the determination of UV filters in cosmetic products. A canular extractor was assembled by mounting a hollow fiber inside an external tube with a tee-connector. The organic solvent was immobilized into the fiber to form a liquid membrane as the acceptor phase. The sample was continuously injected into the extractor and the UV filters were extracted from the aqueous sample into organic acceptor phase. The main parameters affecting HF-LPME including extraction solvent, sample volume, sample flow rate, pH values and ionic strength were investigated. Toluene has been verified to be suitable as the acceptor phase. Under the optimized HF-LPME conditions, the enrichment factors of five UV filters varying from 24 to 57 were achieved. The limits of detection for the five UV filters were in the range of 1-100 μg L-1 .The relative standard deviations (RSDs) of HF-LPME and HPLC analysis were lower than 5.2%. The proposed method has been successfully applied to the analysis of the varied cosmetic products.
基金Project supported by the National Natural Science Foundation of China (or Young Scientists (Nos. 41001131 and 51009126), the Action Plan for the Development of Western China of the Chinese Academy of Sciences (No. KZCX2-XB2-13), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-YW-N-003) and Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (Nos. 602-210805 and 602-210804).
文摘The separation of Sm(III) through stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HC1 solution as the stripping solution and membrane solution of di(2-ethylhexyl) phosphoric acid (p204) dissolved in kerosene, has been studied. A set of factors were studied, including pH value, initial concentration of Sm(III) and different ionic strength of feed phase, volume ratio of membrane solution and stripping solution (O/W), HC1 concentration, carrier concentration, different stripping agents of dispersion phase on Sm(III) separation. Experimental results indicate that the optimum separa- tion conditions of Sm(III) were obtained as that HC1 concentration was 4.00 tool/L, p204 concentration was 0.150 mol/L, and volume ratio of membrane solution and stripping solution (O/W) was 1.00 in the dispersion phase, and pH value was 4.60 in the feed phase. Ionic strength had no obvious effect on separation of Sm(III). When initial Sm(III) concentration was 1.00 × 10^-4 mol/L, the separation rate of Sm(III) was up to 93.5% in 85 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The modeled results were in good agreement with the experiment data.
基金financially supported by the National Natural Science Foundation of China for Young Scientists(Nos. 51109197 and 51009126)the Action Plan for the Development of Western China of the Chinese Academy of Sciences (No.KZCX2-XB2-13)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KSCX2-YW-N -003)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology(Nos.602-210805 and 602-210804)
文摘Stripping dispersion hollow fiber liquid membrane system(SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO_3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester(PC-88A) dissolved in kerosene,has been studied for the extraction of Sm^(3+).Many factors including pH value, volume ratio of membrane solution to stripping solution(OAV) and carrier concentration on Sm^(3+) extraction were investigated. Experimental results indicate that the optimum extraction conditions of Sm^(3+) were obtained as that PC-88A concentration was 0.120 mol/L,and OAV was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm^(3+) concentration was 1.20×10^(-4) mol/L,the extraction percentage of Sm^(3+) was up to 92.8%in 160 min.