We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and consideri...We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.展开更多
We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-l...We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International Science and Technology Cooperation Program of China(Grant No.2011DFA11300)
文摘We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Funds from the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.