Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen...Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.展开更多
Developing excellent cathode catalysts with superior catalytic activities is essential for the practical application of aprotic lithium-oxygen batteries(LOBs).Herein,we successfully synthesized nitrogen-doped hollow m...Developing excellent cathode catalysts with superior catalytic activities is essential for the practical application of aprotic lithium-oxygen batteries(LOBs).Herein,we successfully synthesized nitrogen-doped hollow mesoporous carbon spheres encapsulated with molybdenum disulfide(MoS_(2))nanosheets as the cathode catalyst for rechargeable LOBs,and the relationship between the battery performance and structural characteristics was intensively researched.We found that the synergistic effect of the nitrogen-doped mesoporous carbon and MoS_(2)nanosheets endows superior electrocatalytic activities to the composite catalyst.On the one hand,the nitrogen-doped mesoporous carbon could enable fast charge transfer and effectively accommodate more discharging products in the composite skeleton.On the other hand,the thin MoS_(2)nanosheets could promote mass transportation to facilitate the revisable formation and decomposition of the Li2O2 during oxygen reduction reaction and oxygen evolution reaction,and the side reactions were also prevented,apparently due to their full coverage on the composite surfaces.As a result,the catalytic cathode loaded with 2H-MoS_(2)-modified nitrogen-doped hollow mesoporous carbon spheres exhibited excellent electrochemical performance in terms of large discharge-/charge-specific capacities with low overpotentials and extended cycling life,and they hold great promise for acting as the cathode catalyst for high-performance LOBs.展开更多
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ...The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.展开更多
The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru compl...The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru complex,N,P-containing porous organic polymers(POPs),and mesoporous hollow carbon spheres(Ru^(3+)-POPs@MHCS)is reported for CO_(2)hydrogenation to formate.Based on comprehensive structural analyses,we demonstrated that Ru^(3+)-POPs were successfully immobilized within MHCS.The optimized Ru^(3+)-0.5POPs@MHCS catalyst,which was obtained with about 5 wt.%Ru^(3+)and 0.5 mmol POPs polymers confined into 0.3 g MHCS,exhibited high catalytic activity for CO_(2)hydrogenation to formate(turnover number(TON)>1,200 for 24 h under mild reaction conditions(4.0 MPa,120℃))and improved durability,compared to Ru^(3+)catalysts without POPs polymers(Ru^(3+)-MHCS)and unencapsulated MHCS(Ru^(3+)-0.5POPs)catalysts.The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru^(3+)-POPs.Furthermore,the MHCS and POPs showed high CO_(2)adsorption ability.Ru^(3+)-POPs encapsulated into MHCS reduces the activation energy barrier for CO_(2)hydrogenation to formate.展开更多
基金supported by the National Natural Science Foundation of China(No.52374350)China Postdoctoral Science Foundation(Nos.2020M680347 and 2021T140051)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-045A1)。
文摘Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
基金the National Natural Science Foundation of China(grant nos.51971119 and 52171141)the Natural Science Foundation of Shandong Province(grant nos.ZR2020YQ32 and ZR2020QB122)+2 种基金the China Postdoctoral Science Foundation(grant no.2020M672054)the Guangdong Basic and Applied Basic Research Foundation(grant no.2021A1515111124)the Young Scholars Program of Shandong University(grant no.2019WLJH21).
文摘Developing excellent cathode catalysts with superior catalytic activities is essential for the practical application of aprotic lithium-oxygen batteries(LOBs).Herein,we successfully synthesized nitrogen-doped hollow mesoporous carbon spheres encapsulated with molybdenum disulfide(MoS_(2))nanosheets as the cathode catalyst for rechargeable LOBs,and the relationship between the battery performance and structural characteristics was intensively researched.We found that the synergistic effect of the nitrogen-doped mesoporous carbon and MoS_(2)nanosheets endows superior electrocatalytic activities to the composite catalyst.On the one hand,the nitrogen-doped mesoporous carbon could enable fast charge transfer and effectively accommodate more discharging products in the composite skeleton.On the other hand,the thin MoS_(2)nanosheets could promote mass transportation to facilitate the revisable formation and decomposition of the Li2O2 during oxygen reduction reaction and oxygen evolution reaction,and the side reactions were also prevented,apparently due to their full coverage on the composite surfaces.As a result,the catalytic cathode loaded with 2H-MoS_(2)-modified nitrogen-doped hollow mesoporous carbon spheres exhibited excellent electrochemical performance in terms of large discharge-/charge-specific capacities with low overpotentials and extended cycling life,and they hold great promise for acting as the cathode catalyst for high-performance LOBs.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.
基金supported by JSPS KAKENHI(Nos.18K14056 and 19H00838)JST,PRESTO(No.JPMJPR19T3)+3 种基金Japan.A part of this work was supported by the cooperative research program of“Network Joint Research Center for Materials and Devices”(No.20211069).support of the International Joint Research Promotion Program at Osaka University.G.X.Y.gratefully acknowledges the financial support from the China Scholarship Council(No.201808310132)Y.K.,K.M.,and H.Y.thank the Elements Strategy Initiative of MEXT(No.JPMXP0112101003)Japan.The synchrotron radiation experiments for XAFS measurement were performed at the BL01B1 beamline in SPring-8 with approval from JASRI(Nos.2019B1114 and 2020A1064).
文摘The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide(CO_(2))hydrogenation is challenging.Herein,a ternary hybrid heterogeneous catalyst,involving mononuclear Ru complex,N,P-containing porous organic polymers(POPs),and mesoporous hollow carbon spheres(Ru^(3+)-POPs@MHCS)is reported for CO_(2)hydrogenation to formate.Based on comprehensive structural analyses,we demonstrated that Ru^(3+)-POPs were successfully immobilized within MHCS.The optimized Ru^(3+)-0.5POPs@MHCS catalyst,which was obtained with about 5 wt.%Ru^(3+)and 0.5 mmol POPs polymers confined into 0.3 g MHCS,exhibited high catalytic activity for CO_(2)hydrogenation to formate(turnover number(TON)>1,200 for 24 h under mild reaction conditions(4.0 MPa,120℃))and improved durability,compared to Ru^(3+)catalysts without POPs polymers(Ru^(3+)-MHCS)and unencapsulated MHCS(Ru^(3+)-0.5POPs)catalysts.The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru^(3+)-POPs.Furthermore,the MHCS and POPs showed high CO_(2)adsorption ability.Ru^(3+)-POPs encapsulated into MHCS reduces the activation energy barrier for CO_(2)hydrogenation to formate.