期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Controllable Preparation and Superior Rate Performance of Spinel LiMn2O4 Hollow Microspheresas Cathode Material for Lithium-ion Batteries 被引量:1
1
作者 王诗瑶 肖亮 +3 位作者 guo yonglin deng bohua qu deyu xie zhizhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期503-508,共6页
Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Sca... Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA.h-g^-1 at C/10 (14.8 mA.g^-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh-gq at a high rate of 5C. The apparent lithium-ion diffusion coefficient (Dapp) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2.s^-1 showing a regular "W" shape curve plotted with test voltages. The D app of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling. 展开更多
关键词 hollow mierosphere spinel LiMn2O4 spherical MnCO3 rate capability diffusion coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部