Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water...Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.展开更多
Multi-walled carbon nanotubes(MWCNTs) reinforced hollow glass microspheres(HGMs)/epoxy syntactic foam was fabricated. The effects of ultrasonication on the density, compression strength, and water absorption prope...Multi-walled carbon nanotubes(MWCNTs) reinforced hollow glass microspheres(HGMs)/epoxy syntactic foam was fabricated. The effects of ultrasonication on the density, compression strength, and water absorption properties were studied. Better dispersed MWCNTs can be obtained after ultrasonication treatment, but an increasing viscosity will lead to a larger amount of voids during syntactic foam preparation especially when the content of HGMs is more than 70 vol%. The existing voids will decrease the density of epoxy syntactic foam. However, the ultrasonication does not change the compression strength much. Ultrasonication treatment will decrease the water absorption content due to the better dispersion and hydrophobic properties of MWCNTs. But a significant increase of water absorption content occurs when HGMs is more than 70 vol%, which is attributed to the higher viscosity and larger amount of voids.展开更多
The exploration of low-cost and high-performance transition metal oxides/carbon(TMOs/C)-based anodes to replace commercial graphite is still a huge challenge for the development of lithium-ion batteries(LIBs).In this ...The exploration of low-cost and high-performance transition metal oxides/carbon(TMOs/C)-based anodes to replace commercial graphite is still a huge challenge for the development of lithium-ion batteries(LIBs).In this work,MnO@N-doped hollow carbon nanotubes(MnO@NHCNT-v,v refers to the adding volume of pyrrole)hybrids are successfully prepared by a facile selftemplate strategy using Mn3O4 nanotubes(Mn3O4 NT)and pyrrole(PY)as the precursors.The morphology,structure and composition of these MnO@NHCNT-v samples are systematically investigated.And the effect of PY adding amounts on the synthesis of MnO@NHCNT-v samples is also explored.The results show that the Mn_(3)O_(4) NT works as a self-template,which releases Mn3+and guides the growth of polypyrrole(PPY)on Mn_(3)O_(4) NT.Meanwhile,it is demonstrated that the synthesis of MnO@NHCNTv hybrids can be well regulated by the added PY amounts.As a result,MnO@NHCNT-1 hybrid not only makes a good balance on the proportion of MnO and carbon matrix but also simultaneously obtains unique peapod-like structure and successful N doping in NHCNT,resulting in good electrical contact between the two components,enhanced chemical binding by Mn-N-C bonds and enough void space inside its microstructure.Benefitting from these merits,the resulting MnO@NHCNT-1 hybrid exhibits outstanding cycling stability and rate capability when used as a LIBs anode.Our work offers a good guidance on the design and preparation of low-price and high-performance TMOs/C-based LIBs anodes.展开更多
Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)...Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)are used as freestanding anode for Li-ion batteries(LIBs)and K-ion batteries(PIBs).The Sb@N-C nanotubes demonstrate exceptional reversible capacity of643 mAh·g^(-1)at 0.1 A·g^(-1)with long cycle stability,as well as outstanding rate performance(219.6 mAh·g^(-1)at10 A·g^(-1))in LIBs.As the anode material of PIBs,they reveal impressive capacity of 325.4 mAh·g^(-1)at 0.1 A·g^(-1).The superior electrochemical properties mainly originate from the novel structure.To be specific,the obtained 3D connected network allows for quick ion and electron migration,and prevents the aggregation of Sb nanoparticles.The hollow porous nanotubes can not only accommodate the volume expansion of Sb nanoparticles during cycling,but also facilitate the infiltration of the electrolyte and reduce the ion diffusion length.This work provides a new insight for designing advanced Sb-based anodes for alkali metal ion batteries.展开更多
Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)a...Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)and heterostructured FeNi_(3)/FeNi_(3)N hollow nanotubes.Owing to its structural and compositional advantages,FeNi_(3)/FeNi_(3)N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68V between the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Theoretical calculations reveal reduced Gibbs free energy for the rate-limiting O–O bond formation during OER due to the self-adaptive surface reconfiguration,which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi_(3)/FeNi_(3)N.ZAB fabricated using the FeNi_(3)/FeNi_(3)N catalyst shows high power density,small charge/discharge voltage gap and excellent cycling stability.In addition to its excellent battery performance,the corresponding quasi-solid-state ZAB shows robust flexibility and integrability.The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst,demonstrating its applicability to other iron-group elements.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218,U22A20145)the Jinan Independent Innovative Team(2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)the Science and Technology Program of University of Jinan(XKY2119).
文摘Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.
基金Funded by the National Natural Science Foundation of China(Nos.51301029 and 51375071)the Fundamental Research Funds for the Central Universities(No.DUT17RC(3)012)
文摘Multi-walled carbon nanotubes(MWCNTs) reinforced hollow glass microspheres(HGMs)/epoxy syntactic foam was fabricated. The effects of ultrasonication on the density, compression strength, and water absorption properties were studied. Better dispersed MWCNTs can be obtained after ultrasonication treatment, but an increasing viscosity will lead to a larger amount of voids during syntactic foam preparation especially when the content of HGMs is more than 70 vol%. The existing voids will decrease the density of epoxy syntactic foam. However, the ultrasonication does not change the compression strength much. Ultrasonication treatment will decrease the water absorption content due to the better dispersion and hydrophobic properties of MWCNTs. But a significant increase of water absorption content occurs when HGMs is more than 70 vol%, which is attributed to the higher viscosity and larger amount of voids.
基金financially supported by the National Natural Science Foundation of China(Nos.52171207,52104301 and 52072120)the Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.21A0392,21B0406 and 19A203)。
文摘The exploration of low-cost and high-performance transition metal oxides/carbon(TMOs/C)-based anodes to replace commercial graphite is still a huge challenge for the development of lithium-ion batteries(LIBs).In this work,MnO@N-doped hollow carbon nanotubes(MnO@NHCNT-v,v refers to the adding volume of pyrrole)hybrids are successfully prepared by a facile selftemplate strategy using Mn3O4 nanotubes(Mn3O4 NT)and pyrrole(PY)as the precursors.The morphology,structure and composition of these MnO@NHCNT-v samples are systematically investigated.And the effect of PY adding amounts on the synthesis of MnO@NHCNT-v samples is also explored.The results show that the Mn_(3)O_(4) NT works as a self-template,which releases Mn3+and guides the growth of polypyrrole(PPY)on Mn_(3)O_(4) NT.Meanwhile,it is demonstrated that the synthesis of MnO@NHCNTv hybrids can be well regulated by the added PY amounts.As a result,MnO@NHCNT-1 hybrid not only makes a good balance on the proportion of MnO and carbon matrix but also simultaneously obtains unique peapod-like structure and successful N doping in NHCNT,resulting in good electrical contact between the two components,enhanced chemical binding by Mn-N-C bonds and enough void space inside its microstructure.Benefitting from these merits,the resulting MnO@NHCNT-1 hybrid exhibits outstanding cycling stability and rate capability when used as a LIBs anode.Our work offers a good guidance on the design and preparation of low-price and high-performance TMOs/C-based LIBs anodes.
基金financially supported by the National Key Research and Development Program of China(No.2019YFB2205005)the Natural Science Foundation of Fujian Province(No.2020 JO1050)。
文摘Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)are used as freestanding anode for Li-ion batteries(LIBs)and K-ion batteries(PIBs).The Sb@N-C nanotubes demonstrate exceptional reversible capacity of643 mAh·g^(-1)at 0.1 A·g^(-1)with long cycle stability,as well as outstanding rate performance(219.6 mAh·g^(-1)at10 A·g^(-1))in LIBs.As the anode material of PIBs,they reveal impressive capacity of 325.4 mAh·g^(-1)at 0.1 A·g^(-1).The superior electrochemical properties mainly originate from the novel structure.To be specific,the obtained 3D connected network allows for quick ion and electron migration,and prevents the aggregation of Sb nanoparticles.The hollow porous nanotubes can not only accommodate the volume expansion of Sb nanoparticles during cycling,but also facilitate the infiltration of the electrolyte and reduce the ion diffusion length.This work provides a new insight for designing advanced Sb-based anodes for alkali metal ion batteries.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities.
文摘Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)and heterostructured FeNi_(3)/FeNi_(3)N hollow nanotubes.Owing to its structural and compositional advantages,FeNi_(3)/FeNi_(3)N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68V between the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Theoretical calculations reveal reduced Gibbs free energy for the rate-limiting O–O bond formation during OER due to the self-adaptive surface reconfiguration,which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi_(3)/FeNi_(3)N.ZAB fabricated using the FeNi_(3)/FeNi_(3)N catalyst shows high power density,small charge/discharge voltage gap and excellent cycling stability.In addition to its excellent battery performance,the corresponding quasi-solid-state ZAB shows robust flexibility and integrability.The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst,demonstrating its applicability to other iron-group elements.