The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical ...The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.展开更多
Since carbon dioxide laser is excellent for incision, hemostasis, coagulation, and vaporization of soft tissues, it has been widely applied in clinical treatments as the laser knife. In these days, flexible thin hollo...Since carbon dioxide laser is excellent for incision, hemostasis, coagulation, and vaporization of soft tissues, it has been widely applied in clinical treatments as the laser knife. In these days, flexible thin hollow optical fibers transmitting mid-infrared light have been developed, and the application of carbon dioxide laser to endoscopic therapy has become possible. However, it is expected that the irradiation effect is influenced by the change in the laser power at the tip of the hollow optical fiber due to the change in the transmittance by the bending loss. The purpose of this research is to quantitatively evaluate the change in the output power and therapeutic effect by bending the hollow optical fiber in a gastrointestinal endoscope. The change in the transmittance of the hollow optical fiber due to the insertion of the fiber into the endoscope and bending of the head of the endoscope was measured. Then, the relationship between the irradiated laser power and the incision depth for a porcine stomach was investigated. As the results, the most significant decrease in the transmittance of the hollow optical fiber was caused by the insertion of the fiber into the instrument channel of the endoscope, and bending of the head of the endoscope with the angle of 90° decreased the output laser power and incision depth by 10% and 25%, respectively. Therefore, it was confirmed that the bending loss of the hollow optical fiber due to the bending of the head of the endoscope had no significant influence on the endoscopic therapy using the carbon dioxide laser.展开更多
To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-...To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.展开更多
In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in ...In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.展开更多
A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of...A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of transmitting CO_2 laser by the fiber is analyzed. The transmitting performances are discussed and its application fields are envisaged.展开更多
Guided modes in a hollow optical fiber are investigated using both scalar approximation and exact vectorial analysis. Effective indices of modes are seen to exhibit "nearly degenerate" groups. Besides provid...Guided modes in a hollow optical fiber are investigated using both scalar approximation and exact vectorial analysis. Effective indices of modes are seen to exhibit "nearly degenerate" groups. Besides providing an insight of modal characteristics, the analysis would prove to be useful to define design parameters for realizing components based on these fibers, and to explore new possibilities.展开更多
文摘The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.
文摘Since carbon dioxide laser is excellent for incision, hemostasis, coagulation, and vaporization of soft tissues, it has been widely applied in clinical treatments as the laser knife. In these days, flexible thin hollow optical fibers transmitting mid-infrared light have been developed, and the application of carbon dioxide laser to endoscopic therapy has become possible. However, it is expected that the irradiation effect is influenced by the change in the laser power at the tip of the hollow optical fiber due to the change in the transmittance by the bending loss. The purpose of this research is to quantitatively evaluate the change in the output power and therapeutic effect by bending the hollow optical fiber in a gastrointestinal endoscope. The change in the transmittance of the hollow optical fiber due to the insertion of the fiber into the endoscope and bending of the head of the endoscope was measured. Then, the relationship between the irradiated laser power and the incision depth for a porcine stomach was investigated. As the results, the most significant decrease in the transmittance of the hollow optical fiber was caused by the insertion of the fiber into the instrument channel of the endoscope, and bending of the head of the endoscope with the angle of 90° decreased the output laser power and incision depth by 10% and 25%, respectively. Therefore, it was confirmed that the bending loss of the hollow optical fiber due to the bending of the head of the endoscope had no significant influence on the endoscopic therapy using the carbon dioxide laser.
基金Project supported by the Beijing Natural Science Foundation,China(Grant No.4192047)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018JBM070 and 2018JBM065)the National Natural Science Foundation of China(Grant No.61675019)
文摘To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.
文摘In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.
基金Supported by the High Technology Research and Development Programme of China
文摘A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of transmitting CO_2 laser by the fiber is analyzed. The transmitting performances are discussed and its application fields are envisaged.
文摘Guided modes in a hollow optical fiber are investigated using both scalar approximation and exact vectorial analysis. Effective indices of modes are seen to exhibit "nearly degenerate" groups. Besides providing an insight of modal characteristics, the analysis would prove to be useful to define design parameters for realizing components based on these fibers, and to explore new possibilities.