In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,th...MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,the impedance matching problem caused by its high conductivity and easy stacking properties is a limiting factor.In this study,a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials.The hollow structure of MXene microspheres constructed with PMMA as a hard template is conducive to optimizing impedance matching and surface modification.In addition,MXene@Co exhibits abundant heterogeneous interfaces,enhancing the interfacial polarization phenomenon during electromagnetic wave absorption.Meanwhile,the surfaceanchored growth of magnetic Co particles forms a magnetic network,which provides a strong magnetic loss capability for the absorber.The hollow structure design significantly enhances the wave absorption performance compared to conventional MXene@Co composites,with a minimum reflection loss of−57.32 dB(effective absorption bandwidth of 5.2 GHz)when the thickness is 2.5 mm(2.2 mm).This work provides a meaningful reference for the design of MXene-based electromagnetic wave absorbing materials.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p...Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.展开更多
Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and...Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.展开更多
Safe, green and efficient industrial production has always been the pursuit of the chemical industry. Since thermal energy is the driving force for most of chemical reactions, an ideal reaction tank would have the cap...Safe, green and efficient industrial production has always been the pursuit of the chemical industry. Since thermal energy is the driving force for most of chemical reactions, an ideal reaction tank would have the capacity to automatically regulate heat conduction rate. In detail, this reaction tank should endow an ability that resists the heat loss when the reaction temperature is lower than the target, while accelerating the heat dissipation when the system is overheated. In this case, this smart reactor can not only minimize energy consumption but also reduce safety risks.Hollow structures are known to reduce heat conductivity. Particularly, the hollow structure with multishells can provide more interfaces and thus further inhibit heat transmission, which would be more favorable for heat isolation. Step forward, by coupling HoMSs with temperature-sensitive polymer, a smart heat isolation material has been fabricated in this work. It performs as a good heat isolator at a relatively lower temperature. A heat insulation effect of 6.5℃ can be achieved for the TSPU/3S–TiO_(2)HoMSs with a thickness of 1 mm under the temperature field of 50℃.The thermal conductivity of composite material would be raised under overheating conditions. Furthermore, this composite displays an unusual two-stage phase transformation during heating. Benefiting from the unique multishelled structure, energy is found to be gradually guided into the hollow structure and stored inside. This localized heat accumulation enables the composite to be a potential coating material for intelligent thermal-regulator and site-defined micro-reactor.展开更多
Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large sp...Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.展开更多
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water...Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.展开更多
BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoM...BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoMSs were prepared by hydrothermal crystallization using TiO_(2)Ho MSs as template.Then,FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer,forming BaTiO_(3)/TiO_(2)@PPy HoMSs successfully.The electromagnetic wave absorbing properties of BaTiO_(3)/TiO_(2)HoMSs and BaTiO_(3)/TiO_(2)@PPy Ho MSs with different shell number were investigated using a vector network analyzer.The results indicate that BaTiO_(3)/TiO_(2)@PPy HoMSs exhibit improved microwave absorption compared with BaTiO_(3)/TiO_(2)HoMSs.In particular,tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS has the most excellent absorbing performance.The best reflection loss can reach up to-21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm,and the qualified absorption bandwidth of tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS is up to 4.2 GHz.This work paves a new way for the development of high-performance composite microwave absorbing materials.展开更多
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i...Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.展开更多
The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials.However,designing...The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials.However,designing hollow porous electromagnetic absorbers with both desirable impedance matching and high loss capability remains a challenge.Herein,3D hollow porous electromagnetic microspheres were constructed by assembling 0D Co magnetic nanoparticles,1D carbon nanotubes,and 2D carbon nanosheets.Due to the sufficient sites for Co^(2+)riveting,the high loading of magnetic carbon nanotubes(CoNC)and porous carbon spheres formed high-density interfaces,enhancing the interfacial polarization.Furthermore,high-density CoNC were grown in situ on the hollow porous carbon(HPC)microsphere,forming a highly dispersed 3D magnetic network that inhibited the aggregation of magnetic nanoparticles and enhanced magnetic coupling.Therefore,the asprepared CoNC/HPC microspheres exhibited excellent microwave absorption(MA)performance,with a minimum reflection loss of-33.2 dB and an effective bandwidth of 5.5 GHz at a thickness of only 1.8 mm.The interfacial polarization mechanism for enhanced MA performance was demonstrated by electron holography and density functional theory calculations.Magnetic holography and micromagnetic simulations also revealed magnetic confinement and coupling mechanism.This work provides a new approach for designing electromagnetic absorbers with optimized impedance matching and loss capability.展开更多
The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthes...The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthesis of methanol.Cu-based catalysts have been widely studied because of the low cost and excellent performance in mild conditions.However,the improvement of catalytic activity and selectivity remains challenging.Herein,we prepared hollow Cu@ZrO_(2) catalysts through pyrolysis of Cu-loaded Zr-MOF for CO_(2) hydrogenation to methanol.Low-temperature pyrolysis generated highly dispersed Cu nanoparticles with balanced Cu^(0)/Cu^(+)sites,larger amounts of surface basic sites and abundant Cu-ZrO_(2) interface in the hollow structure,contributing to enhanced catalytic capacity for adsorption/activation of CO_(2) and selective hydrogenation to methanol.In situ Fourier Transform Infrared Spectroscopy revealed the methanol formation followed the formate-intermediated pathway.This work would provide a guideline for the design of high-performance catalysts and the understanding of the mechanism and active sites for CO_(2) hydrogenation to methanol.展开更多
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here...MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.展开更多
Recently,electrospinning(ESP)has been widely used as a synthetic technology to prepare nanofibers with unique properties from various raw materials.The applications of functionalized nanofibers have gradually develope...Recently,electrospinning(ESP)has been widely used as a synthetic technology to prepare nanofibers with unique properties from various raw materials.The applications of functionalized nanofibers have gradually developed into one of the most exciting topics in the field of materials science.In this review,we focus on the preparation of multi-structure fibrous nanomaterials by means of multi-fluidic ESP and review the applications of multi-structure nanofibers in energy,catalysis,and biology.First,the working principle and process of ESP are introduced;then,we demonstrate how the microfluidic concept is com-bined with the ESP technique to the multi-fluidic ESP technique.Subsequently,the applications of multi-structure nanofibers in energy(Li^(+)/Na^(+)batteries and Li–S batteries),hetero-catalysis,and biology(drug delivery and tissue engineering)are introduced.Finally,challenges and future directions in this emerging field are summarized.展开更多
Photocatalysis is considered a prospective way to alleviate the energy crisis and environmental pollution.It is therefore extremely important to design highly efficient photocatalysts for catalytic systems.In recent y...Photocatalysis is considered a prospective way to alleviate the energy crisis and environmental pollution.It is therefore extremely important to design highly efficient photocatalysts for catalytic systems.In recent years,hollow‐structured materials have attracted considerable interest for application in energy conversion fields owing to their large specific surface areas,improved light absorption,and shortened charge carrier transfer path.Because they contain inner and outer surfaces,hollow‐structured materials can provide a superior platform for the deposition of other components.A number of hollow‐structured hierarchical systems have been designed and fabricated in recent decades.It is important to rationally design and construct complex hierarchical structures.In this review,general preparation approaches for hollow‐structured materials are presented,followed by a summary of the recent synthesis methods and mechanisms of typical hollow‐structured materials for applications in the photocatalytic field.Complex hollow‐structured hierarchical photocatalysts are classified into two types,hollow cocatalyst‐based and hollow host photocatalyst‐based,and the design principle and analysis of the photocatalytic reaction mechanism for photocatalytic H2 evolution and CO_(2) reduction are also introduced.The effects of hollow‐structured materials have also been investigated.This review provides a reference for the rational construction of advanced,highly efficient photocatalytic materials.展开更多
The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-colu...The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.展开更多
Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic ...Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.展开更多
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金financially supported by the National Natural Science Foundation of China(Nos.51407134,52377026 and 52301192)the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,the impedance matching problem caused by its high conductivity and easy stacking properties is a limiting factor.In this study,a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials.The hollow structure of MXene microspheres constructed with PMMA as a hard template is conducive to optimizing impedance matching and surface modification.In addition,MXene@Co exhibits abundant heterogeneous interfaces,enhancing the interfacial polarization phenomenon during electromagnetic wave absorption.Meanwhile,the surfaceanchored growth of magnetic Co particles forms a magnetic network,which provides a strong magnetic loss capability for the absorber.The hollow structure design significantly enhances the wave absorption performance compared to conventional MXene@Co composites,with a minimum reflection loss of−57.32 dB(effective absorption bandwidth of 5.2 GHz)when the thickness is 2.5 mm(2.2 mm).This work provides a meaningful reference for the design of MXene-based electromagnetic wave absorbing materials.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金financially supported by the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the National Natural Science Foundation of China(21975154,22179078)+1 种基金the Postdoctoral Science Foundation of China(2018M63074)Qingdao Post-doctoral Applied Research Project(QDBSH20220202040)。
文摘Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.
基金The support from the National Natural Science Foundation of China(No.51971083)the Natural Science Foundation of Heilongjiang Province,China(YQ 2020E007)is gratefully acknowledgedfinancially sponsored by Heilongjiang Touyan Team Program.
文摘Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.
基金financially supported by the National Natural Science Foundation of China (Nos.21931012,21971244,92163209,and 52174387)the Education Department of Henan Province (No.20A430024)。
文摘Safe, green and efficient industrial production has always been the pursuit of the chemical industry. Since thermal energy is the driving force for most of chemical reactions, an ideal reaction tank would have the capacity to automatically regulate heat conduction rate. In detail, this reaction tank should endow an ability that resists the heat loss when the reaction temperature is lower than the target, while accelerating the heat dissipation when the system is overheated. In this case, this smart reactor can not only minimize energy consumption but also reduce safety risks.Hollow structures are known to reduce heat conductivity. Particularly, the hollow structure with multishells can provide more interfaces and thus further inhibit heat transmission, which would be more favorable for heat isolation. Step forward, by coupling HoMSs with temperature-sensitive polymer, a smart heat isolation material has been fabricated in this work. It performs as a good heat isolator at a relatively lower temperature. A heat insulation effect of 6.5℃ can be achieved for the TSPU/3S–TiO_(2)HoMSs with a thickness of 1 mm under the temperature field of 50℃.The thermal conductivity of composite material would be raised under overheating conditions. Furthermore, this composite displays an unusual two-stage phase transformation during heating. Benefiting from the unique multishelled structure, energy is found to be gradually guided into the hollow structure and stored inside. This localized heat accumulation enables the composite to be a potential coating material for intelligent thermal-regulator and site-defined micro-reactor.
基金supported by Jinan Mingzhu Co., Ltd (HX20200364)。
文摘Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.
基金the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218,U22A20145)the Jinan Independent Innovative Team(2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)the Science and Technology Program of University of Jinan(XKY2119).
文摘Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.
基金supported by the National Natural Science Foundation of China(Nos.51972305,21820102002,21931012,51932001,and 51872024)。
文摘BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoMSs were prepared by hydrothermal crystallization using TiO_(2)Ho MSs as template.Then,FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer,forming BaTiO_(3)/TiO_(2)@PPy HoMSs successfully.The electromagnetic wave absorbing properties of BaTiO_(3)/TiO_(2)HoMSs and BaTiO_(3)/TiO_(2)@PPy Ho MSs with different shell number were investigated using a vector network analyzer.The results indicate that BaTiO_(3)/TiO_(2)@PPy HoMSs exhibit improved microwave absorption compared with BaTiO_(3)/TiO_(2)HoMSs.In particular,tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS has the most excellent absorbing performance.The best reflection loss can reach up to-21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm,and the qualified absorption bandwidth of tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS is up to 4.2 GHz.This work paves a new way for the development of high-performance composite microwave absorbing materials.
基金financially supported by Beijing Natural Science Foundation(No.2192034)China Postdoctoral Science Foundation(No.2018M631335)National Key R&D Program of China(No.2018YFB0905600).
文摘Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.
基金supported by the National Natural Science Foundation of China(Nos.52231007,51725101,11727807)the Ministry of Science and Technology of China(Nos.2021YFA1200600 and 2018YFA0209102).
文摘The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials.However,designing hollow porous electromagnetic absorbers with both desirable impedance matching and high loss capability remains a challenge.Herein,3D hollow porous electromagnetic microspheres were constructed by assembling 0D Co magnetic nanoparticles,1D carbon nanotubes,and 2D carbon nanosheets.Due to the sufficient sites for Co^(2+)riveting,the high loading of magnetic carbon nanotubes(CoNC)and porous carbon spheres formed high-density interfaces,enhancing the interfacial polarization.Furthermore,high-density CoNC were grown in situ on the hollow porous carbon(HPC)microsphere,forming a highly dispersed 3D magnetic network that inhibited the aggregation of magnetic nanoparticles and enhanced magnetic coupling.Therefore,the asprepared CoNC/HPC microspheres exhibited excellent microwave absorption(MA)performance,with a minimum reflection loss of-33.2 dB and an effective bandwidth of 5.5 GHz at a thickness of only 1.8 mm.The interfacial polarization mechanism for enhanced MA performance was demonstrated by electron holography and density functional theory calculations.Magnetic holography and micromagnetic simulations also revealed magnetic confinement and coupling mechanism.This work provides a new approach for designing electromagnetic absorbers with optimized impedance matching and loss capability.
基金the financial support by the National Natural Science Foundation of China(22178265,U21B2096,21938008)the Tianjin Key Science and Technology Project(19ZXNCGX00030)。
文摘The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthesis of methanol.Cu-based catalysts have been widely studied because of the low cost and excellent performance in mild conditions.However,the improvement of catalytic activity and selectivity remains challenging.Herein,we prepared hollow Cu@ZrO_(2) catalysts through pyrolysis of Cu-loaded Zr-MOF for CO_(2) hydrogenation to methanol.Low-temperature pyrolysis generated highly dispersed Cu nanoparticles with balanced Cu^(0)/Cu^(+)sites,larger amounts of surface basic sites and abundant Cu-ZrO_(2) interface in the hollow structure,contributing to enhanced catalytic capacity for adsorption/activation of CO_(2) and selective hydrogenation to methanol.In situ Fourier Transform Infrared Spectroscopy revealed the methanol formation followed the formate-intermediated pathway.This work would provide a guideline for the design of high-performance catalysts and the understanding of the mechanism and active sites for CO_(2) hydrogenation to methanol.
基金the National Natural Science Foundation of China(NSFC)(22105059,22279112)the Talent Introduction Program of Hebei Agricultural University(YJ201810)+5 种基金the Youth Topnotch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2022203018)the Fok Ying-Tong Education Foundation of China(171064)the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the China Postdoctoral Science Foundation(2018M630747)the 333 Talent Program of Hebei Province(C20221018)for their support。
文摘MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.
基金the National Natural Science Foundation of China (22175007, 21975007, 21774005, and21433012)the National Natural Science Foundation for Outstanding Youth Foundation+4 种基金the Fundamental Research Funds for the Central Universitiesthe National Program for Support of Top-Notch Young Professionalsthe 111 project (B14009)the National Postdoctoral Program for Innovative Talents (BX20190027)the China Postdoctoral Science Foundation Funded Project (2019M650431)
文摘Recently,electrospinning(ESP)has been widely used as a synthetic technology to prepare nanofibers with unique properties from various raw materials.The applications of functionalized nanofibers have gradually developed into one of the most exciting topics in the field of materials science.In this review,we focus on the preparation of multi-structure fibrous nanomaterials by means of multi-fluidic ESP and review the applications of multi-structure nanofibers in energy,catalysis,and biology.First,the working principle and process of ESP are introduced;then,we demonstrate how the microfluidic concept is com-bined with the ESP technique to the multi-fluidic ESP technique.Subsequently,the applications of multi-structure nanofibers in energy(Li^(+)/Na^(+)batteries and Li–S batteries),hetero-catalysis,and biology(drug delivery and tissue engineering)are introduced.Finally,challenges and future directions in this emerging field are summarized.
文摘Photocatalysis is considered a prospective way to alleviate the energy crisis and environmental pollution.It is therefore extremely important to design highly efficient photocatalysts for catalytic systems.In recent years,hollow‐structured materials have attracted considerable interest for application in energy conversion fields owing to their large specific surface areas,improved light absorption,and shortened charge carrier transfer path.Because they contain inner and outer surfaces,hollow‐structured materials can provide a superior platform for the deposition of other components.A number of hollow‐structured hierarchical systems have been designed and fabricated in recent decades.It is important to rationally design and construct complex hierarchical structures.In this review,general preparation approaches for hollow‐structured materials are presented,followed by a summary of the recent synthesis methods and mechanisms of typical hollow‐structured materials for applications in the photocatalytic field.Complex hollow‐structured hierarchical photocatalysts are classified into two types,hollow cocatalyst‐based and hollow host photocatalyst‐based,and the design principle and analysis of the photocatalytic reaction mechanism for photocatalytic H2 evolution and CO_(2) reduction are also introduced.The effects of hollow‐structured materials have also been investigated.This review provides a reference for the rational construction of advanced,highly efficient photocatalytic materials.
文摘The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.
基金supported by the National Natural Science Foundation of China(22179077,51774251)the Shanghai Science and Technology Commission’s"2020 Science and Technology Innovation Action Plan"(20511104003)+2 种基金the Natural Science Foundation in Shanghai(21ZR1424200)the Hebei Natural Science Foundation for Distinguished Young Scholars(B2017203313)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(CG2014003002)。
文摘Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.