The use of the sand concrete makes it possible to carry out a concrete having physico-mechanical properties answering the structural exigences and having economic and environmental advantages compared to the classical...The use of the sand concrete makes it possible to carry out a concrete having physico-mechanical properties answering the structural exigences and having economic and environmental advantages compared to the classical concrete. The present study aims to connecting the parameters of a formulation based on an empirical formula of Caquot in order to optimize, on the one hand the couple compressive strength/absorption of water under various degrees of hygrometry, and on the other hand more precisely to use the concrete sand in the public works sector in the prefabrication of prestressed beams and hollow bricks. The results show the importance of the type of formulation used because it takes into account the percentages of fillers of sand which is a co-product (waste) of massive rock crushing. In addition, the use of fillerized sands, which are wastes of crushing basaltic rocks and containing a small percentage of fillers, is efficient in the manufacture of prestressed beams. As for the hollow bricks, a fillerized basalt sand, containing a high percentage of filler, as well as a sand dune, gives satisfactory results.展开更多
This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressibl...This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressible Navier-Stokes and energy equations to analyze the dynamic thermal response of walls exposed to real thermal excitations of the Marrakesh climate.The results show that increasing the emissivity from 0.1 to 0.9 significantly increases the total heat load over 24 h.Furthermore,filling 100% of the cavities with insulation materials delayed the temperature peak by about 2.3 h and lowered the decrement factor by roughly 43%,with a value smaller than 0.07.In addition,it is demonstrated that the total thermal load is reduced by approximately 28% for improved wall configurations(100% insulation filling cavities)compared to traditional wall configurations(100% air filling cavities),which aids in improving building energy efficiency.展开更多
文摘The use of the sand concrete makes it possible to carry out a concrete having physico-mechanical properties answering the structural exigences and having economic and environmental advantages compared to the classical concrete. The present study aims to connecting the parameters of a formulation based on an empirical formula of Caquot in order to optimize, on the one hand the couple compressive strength/absorption of water under various degrees of hygrometry, and on the other hand more precisely to use the concrete sand in the public works sector in the prefabrication of prestressed beams and hollow bricks. The results show the importance of the type of formulation used because it takes into account the percentages of fillers of sand which is a co-product (waste) of massive rock crushing. In addition, the use of fillerized sands, which are wastes of crushing basaltic rocks and containing a small percentage of fillers, is efficient in the manufacture of prestressed beams. As for the hollow bricks, a fillerized basalt sand, containing a high percentage of filler, as well as a sand dune, gives satisfactory results.
文摘This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance.The finite element approach was used to solve the incompressible Navier-Stokes and energy equations to analyze the dynamic thermal response of walls exposed to real thermal excitations of the Marrakesh climate.The results show that increasing the emissivity from 0.1 to 0.9 significantly increases the total heat load over 24 h.Furthermore,filling 100% of the cavities with insulation materials delayed the temperature peak by about 2.3 h and lowered the decrement factor by roughly 43%,with a value smaller than 0.07.In addition,it is demonstrated that the total thermal load is reduced by approximately 28% for improved wall configurations(100% insulation filling cavities)compared to traditional wall configurations(100% air filling cavities),which aids in improving building energy efficiency.