Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
Transmission of N-atoms (T N ) through small diameters tubes (1.5 and 3 mm internal diameter (i.d) and 9, 50 and 80 cm length for silicone tubes, 1.5 mm i.d and 6.5 cm length for stainless steel tubes) has been measur...Transmission of N-atoms (T N ) through small diameters tubes (1.5 and 3 mm internal diameter (i.d) and 9, 50 and 80 cm length for silicone tubes, 1.5 mm i.d and 6.5 cm length for stainless steel tubes) has been measured in late N2 and Ar-N2 flowing afterglows of microwave plasmas in continuous and pulsed gas injection at a flow rate of 1 and 3 Standard liter by minute (Slm), a gas pressure from 2 to 4 Torr for N2 and 20 Torr for Ar-1%N2 and a plasma power from 150 to 300 Watt. From the experimental TN values, it is deduced the γ-destruction probability inside the tube walls as being y = (1-1.6)×10-3 for the silicon tubes and y = (1.6-2)×10-2 for the stainless steel tubes.展开更多
For catalytic materials,the characteristics of one-dimension and hollowness are the promotion factors for their full presentation of catalytic activity,and through a template-as sis ted method,both above superiorities...For catalytic materials,the characteristics of one-dimension and hollowness are the promotion factors for their full presentation of catalytic activity,and through a template-as sis ted method,both above superiorities can be fused simultaneously.Here,we proposed a novel strategy inspired by Pearson's principle with Cu_(2)O wires as templates,and prepared FeOOH hollow tubes,which covered by FeOOH scales.When applied as oxygen evolution reaction(OER)catalyst,the FeOOH scaly hollow tubes(FeOOH SHTs)showed outstanding catalytic activity with a low overpotential of 245 mV to drive a current density of10 mA·cm^(-2),excellent kinetics manifesting as a low Tafel slope of 46.9 mV·dec^(-1),and robust stability.This work provides a new synthesis strategy for an ideal OER catalyst,FeOOH,with high inherent activity and enhances the feasibility to broaden the design ideas of transition metalbased catalysts.展开更多
Hollow tube-like activated carbon(HTAC) was fabricated by a simple and efficient carbonization method with cotton as carbon precursor activated by KOH without any template. The activation time from 0 to 90 min showe...Hollow tube-like activated carbon(HTAC) was fabricated by a simple and efficient carbonization method with cotton as carbon precursor activated by KOH without any template. The activation time from 0 to 90 min showed no significant effect on the micro-morphology, but greatly influenced the specific surface area and electro- chemical performance. In the end, it was found that the sample activated for 60 min(HTAC-60) has a higher specific surface area of 2600 m2/g, a larger pore volume of 1.52 cm3/g and a greater specific capacitance of 483 F/g at a current density of 0.2 A/g in 1 mol/L H2SO4. Moreover, the sample HTAC-60 shows excellent cycle stability(only 12.2% loss after 5000 cycles) and a high energy density of 67.1 or 37.2 W-h.kg-1 at a power density of 200 or 1000 W/kg, respectively, operated in a voltage range of 0--1.0 V in 1 mol/L H2SO4. The results indicate that cotton can potentially be used as a raw material for producing low cost and high performance activated carbon electrode materials for electric double layer capacitor.展开更多
The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the varia...The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.展开更多
A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity...A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.展开更多
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
文摘Transmission of N-atoms (T N ) through small diameters tubes (1.5 and 3 mm internal diameter (i.d) and 9, 50 and 80 cm length for silicone tubes, 1.5 mm i.d and 6.5 cm length for stainless steel tubes) has been measured in late N2 and Ar-N2 flowing afterglows of microwave plasmas in continuous and pulsed gas injection at a flow rate of 1 and 3 Standard liter by minute (Slm), a gas pressure from 2 to 4 Torr for N2 and 20 Torr for Ar-1%N2 and a plasma power from 150 to 300 Watt. From the experimental TN values, it is deduced the γ-destruction probability inside the tube walls as being y = (1-1.6)×10-3 for the silicon tubes and y = (1.6-2)×10-2 for the stainless steel tubes.
基金financially supported by the National Key Research and Development Program of China(No.2018YFA0703700)the National Natural Science Foundation of China(Nos.12004031,12034002 and 51971025)+3 种基金Beijing Natural Science Foundation(No.2212034)Foshan Talents Special Foundation(No.BKBS202003)the Scientific and Technological Innovation Foundation of Foshan(No.BK22BE005)Foshan Science and Technology Innovation Project(No.2018IT100363)。
文摘For catalytic materials,the characteristics of one-dimension and hollowness are the promotion factors for their full presentation of catalytic activity,and through a template-as sis ted method,both above superiorities can be fused simultaneously.Here,we proposed a novel strategy inspired by Pearson's principle with Cu_(2)O wires as templates,and prepared FeOOH hollow tubes,which covered by FeOOH scales.When applied as oxygen evolution reaction(OER)catalyst,the FeOOH scaly hollow tubes(FeOOH SHTs)showed outstanding catalytic activity with a low overpotential of 245 mV to drive a current density of10 mA·cm^(-2),excellent kinetics manifesting as a low Tafel slope of 46.9 mV·dec^(-1),and robust stability.This work provides a new synthesis strategy for an ideal OER catalyst,FeOOH,with high inherent activity and enhances the feasibility to broaden the design ideas of transition metalbased catalysts.
基金Supported by the National Natural Science Foundation of China(Nos.51372021,51172023).
文摘Hollow tube-like activated carbon(HTAC) was fabricated by a simple and efficient carbonization method with cotton as carbon precursor activated by KOH without any template. The activation time from 0 to 90 min showed no significant effect on the micro-morphology, but greatly influenced the specific surface area and electro- chemical performance. In the end, it was found that the sample activated for 60 min(HTAC-60) has a higher specific surface area of 2600 m2/g, a larger pore volume of 1.52 cm3/g and a greater specific capacitance of 483 F/g at a current density of 0.2 A/g in 1 mol/L H2SO4. Moreover, the sample HTAC-60 shows excellent cycle stability(only 12.2% loss after 5000 cycles) and a high energy density of 67.1 or 37.2 W-h.kg-1 at a power density of 200 or 1000 W/kg, respectively, operated in a voltage range of 0--1.0 V in 1 mol/L H2SO4. The results indicate that cotton can potentially be used as a raw material for producing low cost and high performance activated carbon electrode materials for electric double layer capacitor.
基金Project(60674063) supported by the National Natural Science Foundation of China
文摘The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.
基金This work was supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0108)Science and Technology Planning Project of Guangdong Province,China(2017A050501046)+1 种基金Natural Science Foundation of Guangdong Province(2017A030310185)Science and Technology Program of Guangzhou,China(202102021199).
文摘A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.