Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff...Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie...Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were use...This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.展开更多
Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compound...Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction.展开更多
Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperatu...Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.展开更多
The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, ...The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.展开更多
Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants ...Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize...The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.展开更多
Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree n...Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated ...Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion.展开更多
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ...Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.展开更多
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high...Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”展开更多
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st...The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.展开更多
Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological charac...Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals展开更多
基金the financial support from the National Natural Science Foundation of China(22090062,21922810,21825802,22138003,22108083,and 21725603)the Guangdong Pearl River Talents Program(2021QN02C8)+3 种基金the Science and Technology Program of Guangzhou(202201010118)Zhejiang Provincial Natural Science Foundation of China(LR20B060001)National Science Fund for Excellent Young Scholars(22122811)China Postdoctoral Science Foundation(2022M710123)。
文摘Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金the MICINN (Spain)(Projects PID2019-104778GB-I00, PID2020-115100GB-I00Excellence Unit “Maria de Maeztu” CEX2019-000919-M)+5 种基金the Royal Society of Chemistryfunded by Generalitat Valenciana(PROMETEU/2021/054 and SEJI/2020/034)the “Ramón y Cajal” program (RYC2019-027940-I)the Royal Society (RGSR1221390)Royal Society of Chemistry (R21-5119312833) for the funding.
文摘Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金This work was sponsored by the National Natural Science Foundation of China(No.52172029)the Natural Science Foundation of Henan(No.202300410473).
文摘This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.
基金financially supported by the National Natural Science Foundation of China (22209057)the Guangdong Basic and Applied Basic Research Foundation (2021A1515010362)+1 种基金the Guangzhou Basic and Applied Basic Research Foundation (202102020995)the Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications (2020B121201005)。
文摘Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction.
基金Project(2011AA06A105)supported by the National High-tech Research and Development Program of China
文摘Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.
基金Project (2010FA32370) supported by The Ministry of Science and Technology of ChinaProject (2008WK3002) supported by Hunan Provincial Science and Technology DepartmentProject (20060390891) supported by the Postdoctoral Science Foundation of China
文摘The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.
基金Project(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar,ChinaProject(2009CB623406) supported by the National Basic Research Program of China
文摘Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.
文摘The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.
基金The National Basic Research Program of China(973Program)(No.2006CB601202)
文摘Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金supported financially by the National Natural Foundation of China(Grant No.51672234)the Research Foundation for Hunan Youth Outstanding People from Hunan Provincial Science and Technology Department(2015RS4030)+1 种基金Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource UtilizationProgram for Innovative Research Cultivation Team in University of Ministry of Education of China(1337304)
文摘Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion.
基金supported by the National Natural Science Foundation of China (U1832136 and 21303038)Think-Tank Union Funds for Energy Storage (Grant No.JZ2016QTXM1097)+3 种基金Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (Grant No. RERU2016004)the Fundamental Research Funds for the Central Universities (JZ2016HGTA0690)Natural Science Foundation of Anhui province (1808085QE140)100 Talents Plan of Anhui
文摘Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.
基金National Natural Science Foundation of China(No.51774331)Funds for Nationsl&Local Joint Engineering Research Center of Mineral Salt Deep Utilization(No.SF202103).
文摘Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”
基金financial support from Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21875114,51373078,and 51422304)NSF of Tianjin City(15JCYBJC17700)。
文摘The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
基金Supported by Science Foundations of Laboratory of Computational Physics and China Academy of Engineering Physics under Grant Nos.2009A0102005 and 2009B0101012National Science Foundation of China under Grant Nos.10702010,10775018,and 10604010
文摘Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals