2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this n...2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this new photo- polymer material fabrication is explained and the absorption spectra of the material are measured. This fabrication technique allows a deeper penetration into volume and larger interference irradiation area which is more than 1 cm2. The optical design, theoretical calculations and experimental results including diffraction patterns verifying the forma- tion of periodic structures are presented. Compared with other fabrication technologies using high-power lasers, this approach has greatly reduced the demand for laser apparatus. Therefore, it is much more accessible to most. laboratories and potentially usable in holographic fabrication of photonic crystals and devices in micro electro-mechanical systems (MEMS).展开更多
The demand for fast optical image acquisition without movable optical elements(e.g.,for self-driving car technology)can be met using bioinspired 3D compound eyes.3D laser processing strategies enable designable 3D str...The demand for fast optical image acquisition without movable optical elements(e.g.,for self-driving car technology)can be met using bioinspired 3D compound eyes.3D laser processing strategies enable designable 3D structuring but suffer from low fabrication efficiency,which significantly limits their applications in producing complex 3D optical devices.Herein,we demonstrate a versatile yet simple wet-etching-assisted holographic laser fabrication method for the development of 3D compound eyes.Artificial compoundμ-eyes can be readily fabricated by programming a 3D spot array for the parallel ablation of a curved fused silica surface,followed by controllable etching in a hydrofluoric(HF)acid solution.A 3D-concave-lens array made on a curved surface over an area of 100μm cross-section with each lenslet of 10μm radius was fabricated with high fidelity and excellent imaging/focusing quality.The resultant 3D-concave-lens can serve as a hard template for the mass production of soft compound eyes through soft lithography.Additionally,using a generative adversarial network(GAN)-based deep learning algorithm,image restoration was conducted for each lenslet,which retained a large field of view and significantly improved image quality.This method provides a simple solution to the requirements of compoundμ-eyes required by Industry 4.0.展开更多
We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a mat...We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.展开更多
基金Projiect supported by the National Key Basic Research Special Fund of China (Grant No. 2004CB719805)the Ningbo Natural Science Foundation, China (Grant No. 2009A610011)
文摘2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this new photo- polymer material fabrication is explained and the absorption spectra of the material are measured. This fabrication technique allows a deeper penetration into volume and larger interference irradiation area which is more than 1 cm2. The optical design, theoretical calculations and experimental results including diffraction patterns verifying the forma- tion of periodic structures are presented. Compared with other fabrication technologies using high-power lasers, this approach has greatly reduced the demand for laser apparatus. Therefore, it is much more accessible to most. laboratories and potentially usable in holographic fabrication of photonic crystals and devices in micro electro-mechanical systems (MEMS).
基金National Key R&D Program of China(2021YFB2802000)National Natural Science Foundation of China(61827826,62175086,62131018)+3 种基金Natural Science Foundation of Jilin Province(20220101107JC)Education Department of Jilin Province(JJKH20221003KJ)Interdisciplinary Integration and Innovation Project of JLU(JLUXKJC2021ZZ15)All authors thank Prof.
文摘The demand for fast optical image acquisition without movable optical elements(e.g.,for self-driving car technology)can be met using bioinspired 3D compound eyes.3D laser processing strategies enable designable 3D structuring but suffer from low fabrication efficiency,which significantly limits their applications in producing complex 3D optical devices.Herein,we demonstrate a versatile yet simple wet-etching-assisted holographic laser fabrication method for the development of 3D compound eyes.Artificial compoundμ-eyes can be readily fabricated by programming a 3D spot array for the parallel ablation of a curved fused silica surface,followed by controllable etching in a hydrofluoric(HF)acid solution.A 3D-concave-lens array made on a curved surface over an area of 100μm cross-section with each lenslet of 10μm radius was fabricated with high fidelity and excellent imaging/focusing quality.The resultant 3D-concave-lens can serve as a hard template for the mass production of soft compound eyes through soft lithography.Additionally,using a generative adversarial network(GAN)-based deep learning algorithm,image restoration was conducted for each lenslet,which retained a large field of view and significantly improved image quality.This method provides a simple solution to the requirements of compoundμ-eyes required by Industry 4.0.
基金supported in part by the National Natural Science Foundation of China (No. 61805113)Natural Science Foundation of Guangdong Province(Nos. 2017A030313034 and 2018A030310224)+4 种基金Shenzhen Science and Technology Innovation Commission (Nos.JCYJ20180305180635082JCYJ20170817111349280GJHZ20180928155207206)Open Fund of State Key Laboratory of Applied Optics (No. SKLAO-201904)Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C071)。
文摘We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.