In this paper the making of homeostatic models of the bioenergetic informational acupunctural human’s system of the “Pentacube” and the “Hexagon” according to the Wu Xing rules and energy shifts dynamics is consi...In this paper the making of homeostatic models of the bioenergetic informational acupunctural human’s system of the “Pentacube” and the “Hexagon” according to the Wu Xing rules and energy shifts dynamics is considering. The making of the meridional homeostatic model of the bioenergetic informational acupunctural human’s system based on the existing knowledges about the human body meridians is considering. Preference to choice of the homeostatic functional models of the human body organs energies interaction is substantiated. The meridional control submodel of homeostatic system is defined and constructed. The description of control submodel, perspectives of application and development are represented.展开更多
Hyperexcitability of neural network is a key neurophysiological mechanism in several neurological disorders including epilepsy, neuropathic pain, and tinnitus. Although standard paradigm of pharmacological management ...Hyperexcitability of neural network is a key neurophysiological mechanism in several neurological disorders including epilepsy, neuropathic pain, and tinnitus. Although standard paradigm of pharmacological management of them is to suppress this hyperexcitability, such as having been exemplified by the use of certain antiepileptic drugs, their frequent refractoriness to drug treatment suggests likely different pathophysiological mechanism. Because the pathogenesis in these disorders exhibits a transition from an initial activity loss after injury or sensory deprivation to subsequent hyperexcitability and paroxysmal discharges, this process can be regarded as a process of functional compensation similar to homeostatic plasticity regulation, in which a set level of activity in neural network is maintained after injury-induced activity loss through enhanced network excitability. Enhancing brain activity, such as cortical stimulation that is found to be effective in relieving symptoms of these disorders, may reduce such hyperexcitability through homeostatic plasticity mechanism. Here we review current evidence of homeostatic plasticity in the mechanism of acquired epilepsy, neuropathic pain, and tinnitus and the effects and mechanism of cortical stimulation. Establishing a role of homeostatic plasticity in these disorders may provide a theoretical basis on their pathogenesis as well as guide the development and application of therapeutic approaches through electrically or pharmacologically stimulating brain activity for treating these disorders.展开更多
Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes t...Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes the exocytosis and subsequent endocytic retrieval of glutamate-containing synaptic vesicles,and regulates the postsynaptic response to the presynaptic release of glutamate.Indeed,t PA has a bidirectional effect on the composition of the postsynaptic density(PSD) that does not require plasmin generation or the presynaptic release of glutamate,but varies according to the baseline level of neuronal activity.Hence,in inactive neurons t PA induces phosphorylation and accumulation in the PSD of the Ca^(2+)/calmodulin-dependent protein kinase IIα(pCa MKIIα),followed by pCa MKIIα-induced phosphorylation and synaptic recruitment of Glu R1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA) receptors.In contrast,in active neurons with increased levels of pCa MKIIα in the PSD t PA induces pCa MKIIα and p Glu R1 dephosphorylation and their subsequent removal from the PSD.These effects require active synaptic N-methyl-D-aspartate(NMDA) receptors and cyclin-dependent kinase 5(Cdk5)-induced phosphorylation of the protein phosphatase 1(PP1) at T320.These data indicate that t PA is a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate via bidirectional regulation of the pCa MKIIα/PP1 switch in the PSD.展开更多
<strong>Background: </strong>Progressive insulin resistance (IR) is an important pathophysiologic mechanism of gestational diabetes mellitus (GDM). Homeostatic model assessment (HOMA) is commonly used as a...<strong>Background: </strong>Progressive insulin resistance (IR) is an important pathophysiologic mechanism of gestational diabetes mellitus (GDM). Homeostatic model assessment (HOMA) is commonly used as a parameter of the severity of insulin resistance. <strong>Aims:</strong> To determine indices of insulin resistance (IR) and <em>β</em>-cell function in gestational diabetes mellitus (GDM). <strong>Methods:</strong> This cross sectional study was conducted from March 2017 to September 2018 at Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. The study was performed with 41 GDM and equal number of pregnant women with normal glucose tolerance (NGT) diagnosed on basis of WHO criterion-2013 during 24 - 40 weeks of gestation. Serum glucose was measured by glucose oxidase method and fasting serum insulin was measured by chemiluminescent immunoassay. Equations of homeostatic model assessment (HOMA) were used to calculate insulin indices like-insulin resistance (HOMA-IR), <em>β</em>-cell function (HOMA-B) and insulin sensitivity (HOMA-%S). Data were analyzed and compared by statistical tests. <strong>Results: </strong>A total of eighty-two (82) subjects [41 women with GDM (age: 28.29 ± 3.79 years, BMI: 27.16 ± 4.13 kg/m2) and 41 women with NGT (age: 26.22 ± 5.13 years, BMI: 25.27 ± 3.01 kg/m2)] were included in this study. It was observed that GDM women were significantly older (p = 0.041) and had significantly higher BMI (p = 0.020) than pregnant women with NGT. The GDM group had significantly higher IR as indicated by higher fasting insulin value [GDM vs. NGT;10.19 (7.71 - 13.34) vs. 6.88 (5.88 - 8.47) μIU/ml, median (IQR);p = 0.001] and HOMA-IR [GDM vs. NGT;2.31 (1.73 - 3.15) vs. 1.42 (1.15 - 1.76), median (IQR);p < 0.001], poor <em>β</em>-cell secretory capacity [GDM vs. NGT;HOMA-B: 112.63 (83.52 - 143.93) vs. 128.60 (108.77 - 157.58), median (IQR);p = 0.04] and low insulin sensitivity [GDM vs. NGT;HOMA-%S: 43.29 (31.77 - 57.98) vs. 70.42 (56.86 - 86.59), median (IQR);p < 0.001]. Conclusions: GDM is associated with both insulin resistance and inadequate insulin secretion.展开更多
Humans have been using Cannabis and its extracts for a few thousand years as a medicinal and recreational drug. How- ever, the chemical component in Cannabis sativa, △9-tet- rahydrocannabinol (△9-THC), an exogenou...Humans have been using Cannabis and its extracts for a few thousand years as a medicinal and recreational drug. How- ever, the chemical component in Cannabis sativa, △9-tet- rahydrocannabinol (△9-THC), an exogenous cannabinoid, remained unknown until it was isolated and identified as the main psychoactive ingredient (Gaoni and Mechoulam, 1964).展开更多
The paper considers new approaches to system analysis of natural phenomena in physics, chemistry and bi- ology. It lays the foundation of the homeostatic determinate systems theory that allows revealing the mecha- nis...The paper considers new approaches to system analysis of natural phenomena in physics, chemistry and bi- ology. It lays the foundation of the homeostatic determinate systems theory that allows revealing the mecha- nism by which the basic principle of natural science, determinism, is being realized. Evolution of the mate- rial world is represented as inevitable and continuous growth of orderliness (negentropy) based on transition from one type of determinate systems to another. Increasing negentropy is shown to be closely associated with continuous accumulation of information, which determines the natural diversity in physics, chemistry and biology.展开更多
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circu...Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.展开更多
The autophagosomes were identified in the viable cycloheximide (CHX)-treated cells which had an incapacitated translational process and thus disabled synthesis of endoplasmic reticulum (ER)-derived vesicular transport...The autophagosomes were identified in the viable cycloheximide (CHX)-treated cells which had an incapacitated translational process and thus disabled synthesis of endoplasmic reticulum (ER)-derived vesicular transporters. They were found devoid of the proteins transported from ER to cell organelles, were unable to fuse with ER, Golgi or mitochondria, and displayed affinity with lysosomes. The analysis of autophagosomes, derived from the CHX cell organelles, revealed that their lipid composition resemble that of the maternal organelle. Thus, the ER-derived autophagosomes were marked with the presence of phosphatidylinositol (PI), Golgi-derived vesicles contained sphingomyelin (SM) and glycosphingolipids (GLL), and the mitochondria-derived autophagosomes contained phosphatidylglycerol (PG) and cardiolipin (CL). The incubation of the vesicles with intact lysosomes afforded their and the lysosome membrane lipids degradation. The analysis of the products derived from incubation of lysosomes and autophagosomes with radiolabeled SM, in the presence and the absence of TritonX100, allowed us to conclude that during autophagosome degradation the lysosomal enzymes are not released to cytosol, and that only lysosomes contain the enzymes degrading membrane lipids. In summary, our findings allowed us to authenticate the vesicles generated in the CHX-treated cells as organelle-specific autophagosomes and to determine that complete cycle of cell restitution and debridement includes intralysosomal degradation of the lysosomal membrane engulfing the autophagosomes vesicles.展开更多
Adaptation is an eternal theme of biological evolution. The paper aims at exploring the conception of positive correlation between traditional Chinese medicine (TCM) and human homeostatic evolution based on medical ...Adaptation is an eternal theme of biological evolution. The paper aims at exploring the conception of positive correlation between traditional Chinese medicine (TCM) and human homeostatic evolution based on medical perspective. Discussions mainly involve TCM conforming to natural laws and natural evolution of life, spontaneous harmonization of yin and yang and operating system of human self-healing, modern human immunology and human endogenous immune function in TCM, self-homeostasis of human micro-ecological state and balance mechanism on regulating base in TCM, as well as adaptation--eternal theme of biological evolution and safeguarding adaptability--value of TCM. In perspective of medicine, theory and practice of TCM are in positive correlation with human homeostatic evolution, and what TCM tries to maintain is human intrinsic adaptive capability to disease and nature. Therefore, it is the core value of TCM, which is to be further studied, explored, realized and known to the world.展开更多
In this paper,we investigate a delayed HIV infection model that considers the homeostatic prolif-eration of CD4^(+)T cells.The existence and stability of uninfected equilibrium and infected equilibria(smaller and larg...In this paper,we investigate a delayed HIV infection model that considers the homeostatic prolif-eration of CD4^(+)T cells.The existence and stability of uninfected equilibrium and infected equilibria(smaller and larger ones)are studied by analyzing the characteristic equation of the system.The intracellular delay does not affect the stability of uninfected equilibrium,but it can change the stability of larger positive equilibrium and Hopf bifurcation appears inducing stable limit cycles.Furthermore,direction and stability of Hopf bifur-cation are well investigated by using the central manifold theorem and the normal form theory.The numerical simulation results show that the stability region of larger positive equilibrium becomes smaller as the increase of time delay.Moreover,when the maximum homeostatic growth rate is very small,the larger positive equilibrium is always stable.On the contrary,when the rate of supply of T cells is very small,the larger positive equilibrium is always unstable.展开更多
BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distin...BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.展开更多
Background:Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma(MM)progression.Simultaneously,previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upo...Background:Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma(MM)progression.Simultaneously,previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with commonγ-chain family cytokines in vitro and during homeostatic proliferation.The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets upregulating PD-1 and TIM-3 checkpoint molecules.Methods:The expression of CD25,CD122,CD127 commonγ-chain cytokine receptors,phosphorylated signal transducer and activator of transcription-5(pSTAT5)and eomesodermin(EOMES)was comparatively assessed with flow cytometry in PD-1-and TIM-3-negative and positive T cells before the conditioning and during the first post-transplant month in peripheral blood samples of MM patients.Results:Substantial proportions of PD-1-and TIM-3-positive T lymphocytes expressed commonγ-chain cytokine receptors and pSTAT5.Frequencies of cytokine receptor expressing cells were significantly higher within TIM-3+T cells compared to PD-1+TIM-3−subsets.Considerable proportions of both PD-1-/TIM-3-negative and positive CD8+T cells express EOMES,while only moderate frequencies of CD4+PD-1+/TIM-3+T cells up-regulate this transcription factor.Besides,the surface presence of CD25 and intranuclear expression of EOMES in CD4+T cells were mutually exclusive regardless of PD-1 and TIM-3 expression.The stimulation with commonγ-chain cytokines up-regulates PD-1 and TIM-3 during the proliferation of initially PD-1/TIM-3-negative T cells but fails to expand initially PD-1+and TIM-3+T cell subsets in vitro.Conclusions:Both PD-1 and TIM-3 expressing T cells appear to be able to respond to homeostatic cytokine stimulation.Differences in commonγ-chain cytokine receptor expression between PD-1+and TIM-3+T cells may reflect functional dissimilarity of these cell subsets.Checkpoint blockade appears to alleviate lymphopenia-induced proliferation of PD-1+T cells but may raise the possibility of immune-mediated adverse events.展开更多
文摘In this paper the making of homeostatic models of the bioenergetic informational acupunctural human’s system of the “Pentacube” and the “Hexagon” according to the Wu Xing rules and energy shifts dynamics is considering. The making of the meridional homeostatic model of the bioenergetic informational acupunctural human’s system based on the existing knowledges about the human body meridians is considering. Preference to choice of the homeostatic functional models of the human body organs energies interaction is substantiated. The meridional control submodel of homeostatic system is defined and constructed. The description of control submodel, perspectives of application and development are represented.
基金supported in part by the NIH DA039530(to XJ)a grant from the CURE Epilepsy Foundation(to XJ)
文摘Hyperexcitability of neural network is a key neurophysiological mechanism in several neurological disorders including epilepsy, neuropathic pain, and tinnitus. Although standard paradigm of pharmacological management of them is to suppress this hyperexcitability, such as having been exemplified by the use of certain antiepileptic drugs, their frequent refractoriness to drug treatment suggests likely different pathophysiological mechanism. Because the pathogenesis in these disorders exhibits a transition from an initial activity loss after injury or sensory deprivation to subsequent hyperexcitability and paroxysmal discharges, this process can be regarded as a process of functional compensation similar to homeostatic plasticity regulation, in which a set level of activity in neural network is maintained after injury-induced activity loss through enhanced network excitability. Enhancing brain activity, such as cortical stimulation that is found to be effective in relieving symptoms of these disorders, may reduce such hyperexcitability through homeostatic plasticity mechanism. Here we review current evidence of homeostatic plasticity in the mechanism of acquired epilepsy, neuropathic pain, and tinnitus and the effects and mechanism of cortical stimulation. Establishing a role of homeostatic plasticity in these disorders may provide a theoretical basis on their pathogenesis as well as guide the development and application of therapeutic approaches through electrically or pharmacologically stimulating brain activity for treating these disorders.
基金supported in part by National Institutes of Health Grants NS-079331(to MY)and NS-091201(to MY)
文摘Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes the exocytosis and subsequent endocytic retrieval of glutamate-containing synaptic vesicles,and regulates the postsynaptic response to the presynaptic release of glutamate.Indeed,t PA has a bidirectional effect on the composition of the postsynaptic density(PSD) that does not require plasmin generation or the presynaptic release of glutamate,but varies according to the baseline level of neuronal activity.Hence,in inactive neurons t PA induces phosphorylation and accumulation in the PSD of the Ca^(2+)/calmodulin-dependent protein kinase IIα(pCa MKIIα),followed by pCa MKIIα-induced phosphorylation and synaptic recruitment of Glu R1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA) receptors.In contrast,in active neurons with increased levels of pCa MKIIα in the PSD t PA induces pCa MKIIα and p Glu R1 dephosphorylation and their subsequent removal from the PSD.These effects require active synaptic N-methyl-D-aspartate(NMDA) receptors and cyclin-dependent kinase 5(Cdk5)-induced phosphorylation of the protein phosphatase 1(PP1) at T320.These data indicate that t PA is a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate via bidirectional regulation of the pCa MKIIα/PP1 switch in the PSD.
文摘<strong>Background: </strong>Progressive insulin resistance (IR) is an important pathophysiologic mechanism of gestational diabetes mellitus (GDM). Homeostatic model assessment (HOMA) is commonly used as a parameter of the severity of insulin resistance. <strong>Aims:</strong> To determine indices of insulin resistance (IR) and <em>β</em>-cell function in gestational diabetes mellitus (GDM). <strong>Methods:</strong> This cross sectional study was conducted from March 2017 to September 2018 at Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. The study was performed with 41 GDM and equal number of pregnant women with normal glucose tolerance (NGT) diagnosed on basis of WHO criterion-2013 during 24 - 40 weeks of gestation. Serum glucose was measured by glucose oxidase method and fasting serum insulin was measured by chemiluminescent immunoassay. Equations of homeostatic model assessment (HOMA) were used to calculate insulin indices like-insulin resistance (HOMA-IR), <em>β</em>-cell function (HOMA-B) and insulin sensitivity (HOMA-%S). Data were analyzed and compared by statistical tests. <strong>Results: </strong>A total of eighty-two (82) subjects [41 women with GDM (age: 28.29 ± 3.79 years, BMI: 27.16 ± 4.13 kg/m2) and 41 women with NGT (age: 26.22 ± 5.13 years, BMI: 25.27 ± 3.01 kg/m2)] were included in this study. It was observed that GDM women were significantly older (p = 0.041) and had significantly higher BMI (p = 0.020) than pregnant women with NGT. The GDM group had significantly higher IR as indicated by higher fasting insulin value [GDM vs. NGT;10.19 (7.71 - 13.34) vs. 6.88 (5.88 - 8.47) μIU/ml, median (IQR);p = 0.001] and HOMA-IR [GDM vs. NGT;2.31 (1.73 - 3.15) vs. 1.42 (1.15 - 1.76), median (IQR);p < 0.001], poor <em>β</em>-cell secretory capacity [GDM vs. NGT;HOMA-B: 112.63 (83.52 - 143.93) vs. 128.60 (108.77 - 157.58), median (IQR);p = 0.04] and low insulin sensitivity [GDM vs. NGT;HOMA-%S: 43.29 (31.77 - 57.98) vs. 70.42 (56.86 - 86.59), median (IQR);p < 0.001]. Conclusions: GDM is associated with both insulin resistance and inadequate insulin secretion.
基金supported by National Institutes of Health grants NS076815
文摘Humans have been using Cannabis and its extracts for a few thousand years as a medicinal and recreational drug. How- ever, the chemical component in Cannabis sativa, △9-tet- rahydrocannabinol (△9-THC), an exogenous cannabinoid, remained unknown until it was isolated and identified as the main psychoactive ingredient (Gaoni and Mechoulam, 1964).
文摘The paper considers new approaches to system analysis of natural phenomena in physics, chemistry and bi- ology. It lays the foundation of the homeostatic determinate systems theory that allows revealing the mecha- nism by which the basic principle of natural science, determinism, is being realized. Evolution of the mate- rial world is represented as inevitable and continuous growth of orderliness (negentropy) based on transition from one type of determinate systems to another. Increasing negentropy is shown to be closely associated with continuous accumulation of information, which determines the natural diversity in physics, chemistry and biology.
基金supported by scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)Coordenaao de Aperfeicoamento de Pessoal de Nível Superior(CAPES),Brazil(to TCM and DR)+2 种基金supported by the Kungl Vetenskapssamh Scholarship(Royal Society of Arts and Scientists)provided by Uppsala University,Sweden(to TCM)supported by the Swedish Research Council and the Swedish Brain Research Foundation(to HBS)。
文摘Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.
文摘The autophagosomes were identified in the viable cycloheximide (CHX)-treated cells which had an incapacitated translational process and thus disabled synthesis of endoplasmic reticulum (ER)-derived vesicular transporters. They were found devoid of the proteins transported from ER to cell organelles, were unable to fuse with ER, Golgi or mitochondria, and displayed affinity with lysosomes. The analysis of autophagosomes, derived from the CHX cell organelles, revealed that their lipid composition resemble that of the maternal organelle. Thus, the ER-derived autophagosomes were marked with the presence of phosphatidylinositol (PI), Golgi-derived vesicles contained sphingomyelin (SM) and glycosphingolipids (GLL), and the mitochondria-derived autophagosomes contained phosphatidylglycerol (PG) and cardiolipin (CL). The incubation of the vesicles with intact lysosomes afforded their and the lysosome membrane lipids degradation. The analysis of the products derived from incubation of lysosomes and autophagosomes with radiolabeled SM, in the presence and the absence of TritonX100, allowed us to conclude that during autophagosome degradation the lysosomal enzymes are not released to cytosol, and that only lysosomes contain the enzymes degrading membrane lipids. In summary, our findings allowed us to authenticate the vesicles generated in the CHX-treated cells as organelle-specific autophagosomes and to determine that complete cycle of cell restitution and debridement includes intralysosomal degradation of the lysosomal membrane engulfing the autophagosomes vesicles.
基金Supported by the Soft Scientific Project of Henan Province (No.102400440059)the Philosophy and Social Science Program of Henan Province,China(No.2011FYY014)
文摘Adaptation is an eternal theme of biological evolution. The paper aims at exploring the conception of positive correlation between traditional Chinese medicine (TCM) and human homeostatic evolution based on medical perspective. Discussions mainly involve TCM conforming to natural laws and natural evolution of life, spontaneous harmonization of yin and yang and operating system of human self-healing, modern human immunology and human endogenous immune function in TCM, self-homeostasis of human micro-ecological state and balance mechanism on regulating base in TCM, as well as adaptation--eternal theme of biological evolution and safeguarding adaptability--value of TCM. In perspective of medicine, theory and practice of TCM are in positive correlation with human homeostatic evolution, and what TCM tries to maintain is human intrinsic adaptive capability to disease and nature. Therefore, it is the core value of TCM, which is to be further studied, explored, realized and known to the world.
基金supported by the National Natural Science Foundation of China(Nos.11871235,11901225)the Natural Science Foundation of Hubei Province(2019CFB189)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.CCNU19TS030,CCNU18XJ041)by the Japan Society for the Promotion of Science“Grand-in-Aid 20K03755”。
文摘In this paper,we investigate a delayed HIV infection model that considers the homeostatic prolif-eration of CD4^(+)T cells.The existence and stability of uninfected equilibrium and infected equilibria(smaller and larger ones)are studied by analyzing the characteristic equation of the system.The intracellular delay does not affect the stability of uninfected equilibrium,but it can change the stability of larger positive equilibrium and Hopf bifurcation appears inducing stable limit cycles.Furthermore,direction and stability of Hopf bifur-cation are well investigated by using the central manifold theorem and the normal form theory.The numerical simulation results show that the stability region of larger positive equilibrium becomes smaller as the increase of time delay.Moreover,when the maximum homeostatic growth rate is very small,the larger positive equilibrium is always stable.On the contrary,when the rate of supply of T cells is very small,the larger positive equilibrium is always unstable.
基金Supported by Xi’an Health Commission Residential Training Base Construction Project,No.2023zp09.
文摘BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.
文摘Background:Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma(MM)progression.Simultaneously,previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with commonγ-chain family cytokines in vitro and during homeostatic proliferation.The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets upregulating PD-1 and TIM-3 checkpoint molecules.Methods:The expression of CD25,CD122,CD127 commonγ-chain cytokine receptors,phosphorylated signal transducer and activator of transcription-5(pSTAT5)and eomesodermin(EOMES)was comparatively assessed with flow cytometry in PD-1-and TIM-3-negative and positive T cells before the conditioning and during the first post-transplant month in peripheral blood samples of MM patients.Results:Substantial proportions of PD-1-and TIM-3-positive T lymphocytes expressed commonγ-chain cytokine receptors and pSTAT5.Frequencies of cytokine receptor expressing cells were significantly higher within TIM-3+T cells compared to PD-1+TIM-3−subsets.Considerable proportions of both PD-1-/TIM-3-negative and positive CD8+T cells express EOMES,while only moderate frequencies of CD4+PD-1+/TIM-3+T cells up-regulate this transcription factor.Besides,the surface presence of CD25 and intranuclear expression of EOMES in CD4+T cells were mutually exclusive regardless of PD-1 and TIM-3 expression.The stimulation with commonγ-chain cytokines up-regulates PD-1 and TIM-3 during the proliferation of initially PD-1/TIM-3-negative T cells but fails to expand initially PD-1+and TIM-3+T cell subsets in vitro.Conclusions:Both PD-1 and TIM-3 expressing T cells appear to be able to respond to homeostatic cytokine stimulation.Differences in commonγ-chain cytokine receptor expression between PD-1+and TIM-3+T cells may reflect functional dissimilarity of these cell subsets.Checkpoint blockade appears to alleviate lymphopenia-induced proliferation of PD-1+T cells but may raise the possibility of immune-mediated adverse events.