期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cortical stimulation for treatment of neurological disorders of hyperexcitability: a role of homeostatic plasticity 被引量:2
1
作者 Zhi Chai Cungen Ma Xiaoming Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期34-38,共5页
Hyperexcitability of neural network is a key neurophysiological mechanism in several neurological disorders including epilepsy, neuropathic pain, and tinnitus. Although standard paradigm of pharmacological management ... Hyperexcitability of neural network is a key neurophysiological mechanism in several neurological disorders including epilepsy, neuropathic pain, and tinnitus. Although standard paradigm of pharmacological management of them is to suppress this hyperexcitability, such as having been exemplified by the use of certain antiepileptic drugs, their frequent refractoriness to drug treatment suggests likely different pathophysiological mechanism. Because the pathogenesis in these disorders exhibits a transition from an initial activity loss after injury or sensory deprivation to subsequent hyperexcitability and paroxysmal discharges, this process can be regarded as a process of functional compensation similar to homeostatic plasticity regulation, in which a set level of activity in neural network is maintained after injury-induced activity loss through enhanced network excitability. Enhancing brain activity, such as cortical stimulation that is found to be effective in relieving symptoms of these disorders, may reduce such hyperexcitability through homeostatic plasticity mechanism. Here we review current evidence of homeostatic plasticity in the mechanism of acquired epilepsy, neuropathic pain, and tinnitus and the effects and mechanism of cortical stimulation. Establishing a role of homeostatic plasticity in these disorders may provide a theoretical basis on their pathogenesis as well as guide the development and application of therapeutic approaches through electrically or pharmacologically stimulating brain activity for treating these disorders. 展开更多
关键词 homeostatic plasticity EPILEPSY neuropathic pain cerebral cortex HYPEREXCITABILITY brain injury TINNITUS cortical stimulation
下载PDF
Tissue-type plasminogen activator is a homeostatic regulator of synaptic function in the central nervous system 被引量:1
2
作者 Valerie Jeanneret Manuel Yepes 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期362-365,共4页
Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes t... Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes the exocytosis and subsequent endocytic retrieval of glutamate-containing synaptic vesicles,and regulates the postsynaptic response to the presynaptic release of glutamate.Indeed,t PA has a bidirectional effect on the composition of the postsynaptic density(PSD) that does not require plasmin generation or the presynaptic release of glutamate,but varies according to the baseline level of neuronal activity.Hence,in inactive neurons t PA induces phosphorylation and accumulation in the PSD of the Ca^(2+)/calmodulin-dependent protein kinase IIα(pCa MKIIα),followed by pCa MKIIα-induced phosphorylation and synaptic recruitment of Glu R1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA) receptors.In contrast,in active neurons with increased levels of pCa MKIIα in the PSD t PA induces pCa MKIIα and p Glu R1 dephosphorylation and their subsequent removal from the PSD.These effects require active synaptic N-methyl-D-aspartate(NMDA) receptors and cyclin-dependent kinase 5(Cdk5)-induced phosphorylation of the protein phosphatase 1(PP1) at T320.These data indicate that t PA is a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate via bidirectional regulation of the pCa MKIIα/PP1 switch in the PSD. 展开更多
关键词 tissue-type plasminogen activator (tPA) homeostatic plasticity Ca^2+/calmodulin-dependent protein kinase post-synaptic density protein phosphatase 1 PLASMIN
下载PDF
Dendritic spine density changes and homeostatic synaptic scaling:a meta-analysis of animal studies
3
作者 Thiago C.Moulin Danielle Rayêe Helgi B.Schiöth 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第1期20-24,共5页
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circu... Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity. 展开更多
关键词 chronic inhibition chronic stimulation dendritic spines DOWNSCALING EXCITABILITY homeostatic plasticity spine density synaptic scaling upscaling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部