A quantitative analysis of limit cycles and homoclinic orbits, and the bifurcation curve for the Bogdanov-Takens system are discussed. The parameter incremental method for approximate analytical-expressions of these p...A quantitative analysis of limit cycles and homoclinic orbits, and the bifurcation curve for the Bogdanov-Takens system are discussed. The parameter incremental method for approximate analytical-expressions of these problems is given. These analytical-expressions of the limit cycle and homoclinic orbit are shown as the generalized harmonic functions by employing a time transformation. Curves of the parameters and the stability characteristic exponent of the limit cycle versus amplitude are drawn. Some of the limit cycles and homoclinic orbits phase portraits are plotted. The relationship curves of parameters μ and A with amplitude a and the bifurcation diagrams about the parameter are also given. The numerical accuracy of the calculation results is good.展开更多
In the paper we consider a wide class of slow-fast second order systems and give sufficient conditions for the existence of a singular limit cycle related to a homoclinic orbit.
This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and...This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.展开更多
Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at mo...Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.展开更多
In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 h...In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.展开更多
For a given system, by using the Tkachev method which concerned with the proof of the stability of a multiple limit cycle, the exact computation formula of the third separatrix values named by Leontovich for the multi...For a given system, by using the Tkachev method which concerned with the proof of the stability of a multiple limit cycle, the exact computation formula of the third separatrix values named by Leontovich for the multiple limit cycle bifurcation was given, which was one of the main criterions for the number of limit cycles bifurcated from a homoclinic orbit and the stability of the homoclinic loop, and a computation formula for higher separatrix values was conjectured.展开更多
Using the method of multi-parameter perturbation theory and qualitative analysis,a cubic system perturbed by degree four are investigated in this paper. After systematic analysis,it is found that the studied system ca...Using the method of multi-parameter perturbation theory and qualitative analysis,a cubic system perturbed by degree four are investigated in this paper. After systematic analysis,it is found that the studied system can have nine limit cycles with their distributions are obtained.展开更多
In this article, we study the expansion of the first order Melnikov function in a near-Hamiltonian system on the plane near a double homoclinic loop. We obtain an explicit formula to compute the first four coeffcients...In this article, we study the expansion of the first order Melnikov function in a near-Hamiltonian system on the plane near a double homoclinic loop. We obtain an explicit formula to compute the first four coeffcients, and then identify the method of finding at least 7 limit cycles near the double homoclinic loop using these coefficients. Finally, we present some interesting applications.展开更多
A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurca...A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurcation, homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied. It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.展开更多
This paper deals with a kind of fourth degree systems with perturbations. By using the method of multi-parameter perturbation theory and qualitative analysis, it is proved that the system can have six limit cycles.
This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations o...This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation. It can be concluded that H(5) ? 25 = 52, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to study the weakened 16th Hilbert problem.展开更多
In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polyn...In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polynomials.展开更多
In this paper, we consider the bifurcation for a class of cubic integrable system under cubic perturbation. Using bifurcation theory and qualitative analysis, we obtain a complete bifurcation diagram of the system in ...In this paper, we consider the bifurcation for a class of cubic integrable system under cubic perturbation. Using bifurcation theory and qualitative analysis, we obtain a complete bifurcation diagram of the system in a neighbourhood of the origin for parameter plane.展开更多
In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limi...In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limit cycles.展开更多
This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bi...This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.展开更多
The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the syst...The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the system has a unique limit cycle, homoclinic orbits, canards or the unique equilibrium point is globally asymptotic stable are given. The methods in our previous papers are used for the proofs.展开更多
基金the National Natural Science Foundation of China (No.10672193)
文摘A quantitative analysis of limit cycles and homoclinic orbits, and the bifurcation curve for the Bogdanov-Takens system are discussed. The parameter incremental method for approximate analytical-expressions of these problems is given. These analytical-expressions of the limit cycle and homoclinic orbit are shown as the generalized harmonic functions by employing a time transformation. Curves of the parameters and the stability characteristic exponent of the limit cycle versus amplitude are drawn. Some of the limit cycles and homoclinic orbits phase portraits are plotted. The relationship curves of parameters μ and A with amplitude a and the bifurcation diagrams about the parameter are also given. The numerical accuracy of the calculation results is good.
基金Natural Science Foundation of Anhui Education Committee(2000J1008)
文摘In the paper we consider a wide class of slow-fast second order systems and give sufficient conditions for the existence of a singular limit cycle related to a homoclinic orbit.
基金Project supported by the National Natural Science Foundation of China (No.10371072) the Ministry of Education of China (No.20010248019, No.20020248010).
文摘This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.
文摘Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.
基金Supported by Fund of Youth of Jiangsu University (Grant No. 05JDG011)National Natural Science Foundation of China (Grant No. 10771088)
文摘In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.
文摘For a given system, by using the Tkachev method which concerned with the proof of the stability of a multiple limit cycle, the exact computation formula of the third separatrix values named by Leontovich for the multiple limit cycle bifurcation was given, which was one of the main criterions for the number of limit cycles bifurcated from a homoclinic orbit and the stability of the homoclinic loop, and a computation formula for higher separatrix values was conjectured.
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2010AZ003)
文摘Using the method of multi-parameter perturbation theory and qualitative analysis,a cubic system perturbed by degree four are investigated in this paper. After systematic analysis,it is found that the studied system can have nine limit cycles with their distributions are obtained.
基金the National Natural Science Foundation of China (10671127)
文摘In this article, we study the expansion of the first order Melnikov function in a near-Hamiltonian system on the plane near a double homoclinic loop. We obtain an explicit formula to compute the first four coeffcients, and then identify the method of finding at least 7 limit cycles near the double homoclinic loop using these coefficients. Finally, we present some interesting applications.
基金The research is supported by fund of Youth of Jiangsu University(05JDG011)
文摘A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurcation, homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied. It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.
基金Project supported by the National Natural Science Foundation of China (No.10371072)the New Century Excellent Ttdents in University (No.NCBT-04-038)the Shanghai Leading Academic Discipline (No.T0401).
文摘This paper deals with a kind of fourth degree systems with perturbations. By using the method of multi-parameter perturbation theory and qualitative analysis, it is proved that the system can have six limit cycles.
基金Supported by the Fund of Youth of Jiangsu University(Grant No.05JDG011)the National Natural Science Foundation of China(Nos.90610031,10671127)+1 种基金the Outstanding Personnel Program in Six Fields of Jiangsu Province(Grant No.6-A-029)Shanghai Shuguang Genzong Project(Grant No.04SGG05)
文摘This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation. It can be concluded that H(5) ? 25 = 52, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to study the weakened 16th Hilbert problem.
文摘In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polynomials.
文摘In this paper, we consider the bifurcation for a class of cubic integrable system under cubic perturbation. Using bifurcation theory and qualitative analysis, we obtain a complete bifurcation diagram of the system in a neighbourhood of the origin for parameter plane.
基金Supported by the National Ministry of Education(No.20020248010)the National Natural Science Foundation of China(No.10371072)the Shanghai Leading Academic Discipline Project(No.T0401).
文摘In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limit cycles.
基金Supported by the National Natural Science Foundation of China(No.11101170)Research Project of the Central China Normal University(No.CCNU12A01007)the State Scholarship Fund of the China Scholarship Council(2011842509)
文摘This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.
文摘The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the system has a unique limit cycle, homoclinic orbits, canards or the unique equilibrium point is globally asymptotic stable are given. The methods in our previous papers are used for the proofs.