Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti...Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.展开更多
A system receives shocks at successive random points of discrete time, and each shock causes a positive integer-valued random amount of damage which accumulates on the system one after another. The system is subject t...A system receives shocks at successive random points of discrete time, and each shock causes a positive integer-valued random amount of damage which accumulates on the system one after another. The system is subject to failure and it fails once the total cumulative damage level first exceeds a fixed threshold. Upon failure the system must be replaced by a new and identical one and a cost is incurred. If the system is replaced before failure, a lower cost is incurred.On the basis of some assumptions, we specify a replacement rule which minimizes the longrun (expected) average cost per unit time and possesses the control limit property, Finally, an algorithm is discussed in a special case.展开更多
文摘Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.
文摘A system receives shocks at successive random points of discrete time, and each shock causes a positive integer-valued random amount of damage which accumulates on the system one after another. The system is subject to failure and it fails once the total cumulative damage level first exceeds a fixed threshold. Upon failure the system must be replaced by a new and identical one and a cost is incurred. If the system is replaced before failure, a lower cost is incurred.On the basis of some assumptions, we specify a replacement rule which minimizes the longrun (expected) average cost per unit time and possesses the control limit property, Finally, an algorithm is discussed in a special case.