In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.G...This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.展开更多
In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li C...In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.展开更多
In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gunder...In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved.展开更多
In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite ...In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.展开更多
In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise e...In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.展开更多
In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their ...In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their solutions.展开更多
In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1...In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.展开更多
In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire funct...In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire functions.Among those solutions, some are of infinite order of growth while some are of finite order of growth.展开更多
The author investigates the hyper order of solutions of the higher order linear equation, andimproves the results of M. Ozawa[15], G. Gundersen[6] and J. K. Langley[12].
This paper is devoted to studying the growth problem, the zeros and fixed points distribution of the solutions of linear differential equations f″+e^-zf′+Q(z)f=F(z),whereQ(z)≡h(z)e^cz and c∈R.
In this paper, a class of higher order linear differential equation is investigated. The order and the hyper-order of the solutions of the equation are exactly estimated under some certain conditions.
In this paper, we consider a higher order differential equation and obtain a precise estimate of the order of growth and the hyper-order of solutions to the equation.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
文摘This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.
基金This work is supported by the National Natural Science Foundation of China(10161006)the Natural Science Foundation of Jiangxi Prov(001109)Korea Research Foundation Grant(KRF-2001-015-DP0015)
文摘In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.
文摘In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved.
文摘In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.
文摘In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their solutions.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.
文摘In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire functions.Among those solutions, some are of infinite order of growth while some are of finite order of growth.
基金the National Natural Science Foundation of China(No.10161006)the Jiangxi Provincial Natural Science Foundation of China(No.001109).
文摘The author investigates the hyper order of solutions of the higher order linear equation, andimproves the results of M. Ozawa[15], G. Gundersen[6] and J. K. Langley[12].
基金Tian Yuan Fund for Mathematics (Grant No.10426007)Shanghai Postdoctoral Scientific Program
文摘This paper is devoted to studying the growth problem, the zeros and fixed points distribution of the solutions of linear differential equations f″+e^-zf′+Q(z)f=F(z),whereQ(z)≡h(z)e^cz and c∈R.
基金This work is supported by the National Natural Science Foundation of China(No.10571028)the Ph.D. Programs Foundation of Higher Education of China (No.20050574002)the Natural Science Foundation of Guangdong Province (No.06025059).
文摘In this paper, a class of higher order linear differential equation is investigated. The order and the hyper-order of the solutions of the equation are exactly estimated under some certain conditions.
基金supported by the Natural Science Foundation of Jiangxi Province(No.20114BAB211003)
文摘In this paper, we consider a higher order differential equation and obtain a precise estimate of the order of growth and the hyper-order of solutions to the equation.