We consider the homogeneous Cantor sets which are generalization of symmetric perfect sets, and give a formula of the exact Hausdorff measures for a class of such sets.
M(J, {ms * ns}, {Cs}) be the collection of Cartesian products of two homogenous Moran sets with the same ratios {cs} Where J = [0, 1] × [0, 1]. Then the maximal and minimal values of the Hausdorff dimensions f...M(J, {ms * ns}, {Cs}) be the collection of Cartesian products of two homogenous Moran sets with the same ratios {cs} Where J = [0, 1] × [0, 1]. Then the maximal and minimal values of the Hausdorff dimensions for the elements in M are obtained without any restriction on {msns} or {cs}.展开更多
We pursue the study on homogeneous Cantor sets with their translations. We get the fractal structure of intersection I(t), and find that the Hausdorff measure of these sets forms a discrete spectrum whose non-zero v...We pursue the study on homogeneous Cantor sets with their translations. We get the fractal structure of intersection I(t), and find that the Hausdorff measure of these sets forms a discrete spectrum whose non-zero values come only from shifting numbers with the coding of t. Concretely, a very brief calculation formula of the measure with the coding of t is given.展开更多
基金Supported by the National Natural Science Foundation of China (No. 10771075)
文摘We consider the homogeneous Cantor sets which are generalization of symmetric perfect sets, and give a formula of the exact Hausdorff measures for a class of such sets.
基金Supported by the National Natural Science Foundation of China (No.10771082 and 10871180)
文摘M(J, {ms * ns}, {Cs}) be the collection of Cartesian products of two homogenous Moran sets with the same ratios {cs} Where J = [0, 1] × [0, 1]. Then the maximal and minimal values of the Hausdorff dimensions for the elements in M are obtained without any restriction on {msns} or {cs}.
基金the National Science Foundation of China (10671180)Jiangsu University 05JDG041
文摘We pursue the study on homogeneous Cantor sets with their translations. We get the fractal structure of intersection I(t), and find that the Hausdorff measure of these sets forms a discrete spectrum whose non-zero values come only from shifting numbers with the coding of t. Concretely, a very brief calculation formula of the measure with the coding of t is given.