Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers e...Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.展开更多
The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic sol...The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.展开更多
By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact...By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.展开更多
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In t...The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.展开更多
By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential...By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential equation with this nonlinear transformation. By solving the homogeneity equation via the simplified Hirota method and applying the nonlinear transformation, one soliton, two soliton and three soliton solutions as well as some other types of explicit solutions to the breaking soliton equation were obtained with the assistance of Maple.展开更多
The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the ai...The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.展开更多
文摘Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.
基金The project supported in part by Natural Science Foundation of Henan Province of China under Grant No. 2006110002 and the Science Foundation of Henan University of Science and Technology under Grant No. 2004ZD002
文摘The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)
文摘By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.
基金Supported in part by the Basic Science and the Front Technology Research Foundation of Henan Province of China under Grant No.092300410179the Doctoral Scientific Research Foundation of Henan University of Science and Technology under Grant No.09001204
文摘The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.
文摘By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential equation with this nonlinear transformation. By solving the homogeneity equation via the simplified Hirota method and applying the nonlinear transformation, one soliton, two soliton and three soliton solutions as well as some other types of explicit solutions to the breaking soliton equation were obtained with the assistance of Maple.
基金Supported by the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2011B110013
文摘The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.