期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction for selective glucose photoreforming with remarkable H_(2)coproduction 被引量:1
1
作者 Fuyan Kang Cai Shi +7 位作者 Yeling Zhu Malin Eqi Junming Shi Min Teng Zhanhua Huang Chuanling Si Feng Jiang Jinguang Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期158-167,共10页
The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a ... The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine. 展开更多
关键词 Zn_(x)Cd_(1-x)S homojunction Selective glucose photoreforming Biomass valorization Sustainable H_(2) Photoreforming mechanism
下载PDF
Gradient Si-and Ti-doped Fe_(2)O_(3) hierarchical homojunction photoanode for efficient solar water splitting:Effect of facile microwave-assisted growth of Si-FeOOH on Ti-FeOOH nanocorals
2
作者 Tae Sik Koh Periyasamy Anushkkaran +3 位作者 Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期27-37,I0002,共12页
The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped F... The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped Fe_(2)O_(3) homojunction photoanode to improve the photoelectrochemical(PEC)performance of a Ti-doped Fe_(2)O_(3) photoanode.Ti-FeOOH nanocorals were synthesized using a hydrothermal process,and Si-FeOOH was grown on Ti-FeOOH nanocorals using a rapid and facile microwaveassisted(MW)technique.By varying the MW irradiation time,the thickness of the Si/Ti:Fe_(2)O_(3) photoanode was adjusted and an optimized 3-Si/Ti:Fe_(2)O_(3) photoelectrode was achieved with a significantly enhanced photocurrent density(1.37 mA cm^(-2) at 1.23 V vs.RHE)and a cathodic shift of the onset potential(150 mV)compared with that of bare Ti-Fe_(2)O_(3).This enhanced PEC performance can be ascribed to homojunction formation and Si gradient doping.The Si dopant increased the donor concentration and the formation of a homojunction improved the intrinsic built-in electric field,thereby promoting charge separation and charge transfer.Furthermore,the as-formed homojunction passivated the surfacetrapping states,consequently improving the charge transfer efficiency(60%at 1.23 VRHE)at the photoanode/electrolyte interface.These findings could pave the way for the microwave-assisted fabrication of diverse efficient homojunction photoanodes for PEC water splitting applications. 展开更多
关键词 homojunction MICROWAVE-ASSISTED Hematite Gradient doping PEC water splitting
下载PDF
Effect of homojunction structure in boosting sodium-ion storage: The case of MoO_(2)
3
作者 Sheng Li Wei Zhang +7 位作者 Yingxue Cui Jianmin Ma Hong-Jie Peng Jun Li Xianhu Liu Dickon HLNg Xinyan Liu Jiabiao Lian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期115-122,I0004,共9页
High-efficiency sodium-ion batteries(SIBs) are in great demand for energy storage applications,which are dominated by the Na+storage performance of electrode materials.Here,a one-pot solvothermal method is developed t... High-efficiency sodium-ion batteries(SIBs) are in great demand for energy storage applications,which are dominated by the Na+storage performance of electrode materials.Here,a one-pot solvothermal method is developed to construct amorphous/crystalline MoO_(2)(a/c-MoO_(2)) homojunction for boosting Na+storage.Theoretical simulations signify that electrons redistribute at the homogenous interface of a/c-MoO_(2),resulting in an inbuilt driving force to easily adsorb charge carriers and promote the electron/ion transfer ability.Relying on its crystallographic superiorities,the a/c-MoO_(2)homojunction with high Na adsorbability(-1.61 eV) and low Na diffusion energy barrier(0.519 eV) achieves higher capacity(307 mA h g^(-1)at 0.1 A/g),better rate capability and cycling stability than either a-MoO_(2)or c-MoO_(2)counterpart.Combining in-situ X-ray diffraction(XRD) and ex-situ X-ray photoelectron spectroscopy(XPS)techniques,the ’adsorption-insertion-conversion’ mechanism is well established for Na+storage of MoO_(2).Our work opens new opportunities to optimize electrode materials via crystallographic engineering for efficient Na+storage,and helps to better understand the effects of homojunction structure in enhanced electrochemical performance. 展开更多
关键词 MoO_(2)homojunction Crystallographic engineering Theoretical calculations In-situ XRD Na^(+)storage mechanism
下载PDF
Homojunction structure amorphous oxide thin film transistors with ultra-high mobility
4
作者 Rongkai Lu Siqin Li +8 位作者 Jianguo Lu Bojing Lu Ruqi Yang Yangdan Lu Wenyi Shao Yi Zhao Liping Zhu Fei Zhuge Zhizhen Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期19-26,共8页
Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficu... Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs. 展开更多
关键词 thin film transistors homojunction carrier mobility amorphous oxides
下载PDF
Spatially Bandgap-Graded Mo S2(1-x)Se2x Homojunctions for Self-Powered Visible–Near-Infrared Phototransistors 被引量:5
5
作者 Hao Xu Juntong Zhu +10 位作者 Guifu Zou Wei Liu Xiao Li Caihong Li Gyeong Hee Ryu Wenshuo Xu Xiaoyu Han Zhengxiao Guo Jamie HWarner Jiang Wu Huiyun Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期185-198,共14页
Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features,which opens up new potential for device applications.Here,visible–... Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features,which opens up new potential for device applications.Here,visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys,synthesized by a simple and controllable chemical solution deposition method,are reported.The graded bandgaps,arising from the spatial grading of Se composition and thickness within a single domain,are tuned from 1.83 to 1.73 eV,leading to the formation of a homojunction with a builtin electric field.Consequently,a strong and sensitive gate-modulated photovoltaic effect is demonstrated,enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1,a specific detectivity up to^10^11 Jones,and an on/off ratio up to^10^4.Remarkably,when illuminated by the lights ranging from 405 to 808 nm,the biased devices yield a champion photoresponsivity of 191.5 A W−1,a specific detectivity up to^1012 Jones,a photoconductive gain of 10^6–10^7,and a photoresponsive time in the order of^50 ms.These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions. 展开更多
关键词 Transition metal dichalcogenides Graded bandgaps homojunctionS PHOTOTRANSISTORS SELF-POWERED
下载PDF
Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors 被引量:3
6
作者 洪成允 黄刚锋 +2 位作者 要文文 邓加军 刘小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期363-369,共7页
Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored ... Bi2O2Se thin film could be one of the promising material candidates for the next-generation electronic and optoelectronic applications. However, the performance of Bi2O2Se thin film-based device is not fully explored in the photodetecting area. Considering the fact that the electrical properties such as carrier mobility, work function, and energy band structure of Bi2O2Se are thickness-dependent, the in-plane Bi2O2Se homojunctions consisting of layers with different thicknesses are successfully synthesized by the chemical vapor deposition(CVD) method across the terraces on the mica substrates,where terraces are created in the mica surface layer peeling off process. In this way, effective internal electrical fields are built up along the Bi2O2Se homojunctions, exhibiting diode-like rectification behavior with an on/off ratio of 102, what is more, thus obtained photodetectors possess highly sensitive and ultrafast features, with a maximum photoresponsivity of 2.5 A/W and a lifetime of 4.8 μs. Comparing with the Bi2O2Se uniform thin films, the photo-electric conversion efficiency is greatly improved for the in-plane homojunctions. 展开更多
关键词 Bi2O2Se in-plane homojunction thickness modulation PHOTODETECTORS
下载PDF
A Self-Powered Fast-Response Ultraviolet Detector of p–n Homojunction Assembled from Two ZnO-Based Nanowires 被引量:2
7
作者 Yumei Wang Ying Chen +8 位作者 Wanqiu Zhao Longwei Ding Li Wen Haixia Li Fan Jiang Jun Su Luying Li Nishuang Liu Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期130-136,共7页
Nowadays, fabrication of micro/nano-scale electronic devices with bottom-up approach is paid much research attention. Here, we provide a novel micro/nano-assembling method, which is accurate and efficient, especially ... Nowadays, fabrication of micro/nano-scale electronic devices with bottom-up approach is paid much research attention. Here, we provide a novel micro/nano-assembling method, which is accurate and efficient, especially suitable for the fabrication of micro/nano-scale electronic devices. Using this method, a self-powered ZnO/Sb-doped ZnO nanowire p–n homojunction ultraviolet detector(UVD) was fabricated, and the detailed photoelectric properties were tested. At a reverse bias of -0.1 V under UV light illumination, the photoresponse sensitivity of the UVD was 26.5 and the rise/decay time of the UVD was as short as 30 ms. The micro/nano-assembling method has wide potential applications in the fabrication of specific micro/nano-scale electronic devices. 展开更多
关键词 Zinc oxide Micro/nano-assembling p–n homojunction Ultraviolet photodetector
下载PDF
WO_(3) homojunction photoanode:Integrating the advantages of WO_(3) different facets for efficient water oxidation
8
作者 Minji Yang Jie Li +5 位作者 Gaili Ke Binyao Liu Faqin Dong Long Yang Huichao He Yong Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期37-45,共9页
The manipulation of the surface property of WO_(3) photoanode is the main breakthrough direction to improve its solar water oxidation performance both in thermodynamics and kinetics.Here,we report a WO_(3)(002)/m-WO_(... The manipulation of the surface property of WO_(3) photoanode is the main breakthrough direction to improve its solar water oxidation performance both in thermodynamics and kinetics.Here,we report a WO_(3)(002)/m-WO_(3) homojunction film that is composed of an upper WO_(3) layer with predominant(002)facet(WO_(3)(002))and a lower WO_(3) layer with multi-crystal facets(m-WO_(3))as a photoanode for solar water oxidation.Due to the synergistic effect of WO_(3)(002)layer and m-WO_(3) layer,better water oxidation activity and stability are achieved on the WO_(3)(002)/m-WO_(3) homojunction film relative to the m-WO_(3) and WO_(3)(002)film.Specifically,the improved water oxidation performance on the WO_(3)(002)/m-WO_(3) homojunction film is attributed to the followings.In thermodynamics,the band position differences between WO_(3)(002)layer and m-WO_(3) layer lead to the formation of WO_(3)(002)/m-WO_(3) homojunction,which has positive function of improving their charge separation and transfer.In kinetics,the upper WO_(3)(002)layer of the WO_(3)(002)/m-WO_(3) film has superior activity in the adsorption and activation of water molecules,water oxidation on this homojunction film photoanode is inclined to follow the four-holes pathway,and the corrosion of photoanode from the H_(2)O_(2) intermediate is restrained.The present work provides a new strategy to modify the WO_(3) photoanodes for thermodynamically and kinetically efficient water oxidation. 展开更多
关键词 PHOTOANODE Water oxidation homojunction WO_(3)facet
下载PDF
Large unsaturated magnetoresistance of 2D magnetic semiconductor Fe-SnS_(2) homojunction
9
作者 Jingzhi Fang Huading Song +5 位作者 Bo Li Ziqi Zhou Juehan Yang Benchuan Lin Zhimin Liao Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2022年第9期53-63,共11页
A magnetic semiconductor whose electronic charge and spin can be regulated together will be an important compon-ent of future spintronic devices.Here,we construct a two-dimensional(2D)Fe doped SnS_(2)(Fe-SnS_(2))homog... A magnetic semiconductor whose electronic charge and spin can be regulated together will be an important compon-ent of future spintronic devices.Here,we construct a two-dimensional(2D)Fe doped SnS_(2)(Fe-SnS_(2))homogeneous junction and investigate its electromagnetic transport feature.The Fe-SnS_(2) homojunction device showed large positive and unsatur-ated magnetoresistance(MR)of 1800%in the parallel magnetic field and 600%in the vertical magnetic field,indicating an obvi-ous anisotropic MR feature.In contrast,The MR of Fe-SnS_(2) homojunction is much larger than the pure diamagnetic SnS_(2) and most 2D materials.The application of a gate voltage can regulate the MR effect of Fe-SnS_(2) homojunction devices.Moreover,the stability of Fe-SnS_(2) in air has great application potential.Our Fe-SnS_(2) homojunction has a significant potential in future mag-netic memory applications. 展开更多
关键词 magnetic semiconductor homojunction MAGNETORESISTANCE MR anisotropic
下载PDF
High mobility ultrathin ZnO p–n homojunction modulated by Zn_(0.85)Mg_(0.15)O quantum barriers
10
作者 杨景景 方庆清 +2 位作者 杜文汉 Ke-Ke Zhang 董大舜 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期464-468,共5页
The adding of ZnMgO asymmetric double barriers (ADB) in p-ZnO2(Li, N)/n-ZnO homojunction affects the p-n junction device performance prominently. Two different homojunctions are fabricated on Si (100) substrates... The adding of ZnMgO asymmetric double barriers (ADB) in p-ZnO2(Li, N)/n-ZnO homojunction affects the p-n junction device performance prominently. Two different homojunctions are fabricated on Si (100) substrates by pulsed laser deposition; one is the traditional p-ZnO2 (Li, N)/n-ZnO homojunction with different thicknesses named as S l (250 nm) and S2 (500 nm), the other is the one with ADB embedded in the n-layer named as Q (265 nm). From the photoluminescence spectra, defect luminescence present in the S-series devices is effectively limited in the Q device. The current-voltage curve of the Q device shows Zener-diode rectification property because the two-dimensional electron gas tunnels through the narrow ZnMgO barrier under a reverse bias, thus decreasing the working p-n homojunction thickness from 500 nm to 265 nm. The ADB-modified homojunction shows higher carrier mobility in the Q device. The electroluminescence of the ZnO homojunction is improved in Q compared to S2, because the holes in p-type ZnO (Li, N) can cross the wide ZnMgO barrier under a forward bias voltage into the ZnO quantum well. Therefore, electron-hole recombination occurs in the narrow bandgap of n-type ZnO, creating an ultraviolet light-emitting diode using the ZnO homojunction. 展开更多
关键词 ZnO p-n homojunction light-emitting diodes ZnMgO asymmetric double barriers
下载PDF
Band alignment in SiC-based one-dimensional van der Waals homojunctions
11
作者 谭兴毅 丁林杰 任达华 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期503-507,共5页
The density functional theory method is utilized to verify the electronic structures of SiC nanotubes(SiCNTs) and SiC nanoribbons(SiCNRs) one-dimensional(1D) van der Waals homojunctions(vdWh) under an applied axial st... The density functional theory method is utilized to verify the electronic structures of SiC nanotubes(SiCNTs) and SiC nanoribbons(SiCNRs) one-dimensional(1D) van der Waals homojunctions(vdWh) under an applied axial strain and an external electric field. According to the calculated results, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-II band alignment and robust electronic structures with different diameters or widths. Furthermore,the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-I band alignment, respectively, in a range of[-0.3,-0.1] V/A and [0.1, 0.3] V/A and change into metal when the electric field intensity is equal to or higher than0.4 V/A. Interestingly, the SiCNTs/SiCNRs 1D vdWhs have robust electronic structures under axial strain. These findings demonstrate theoretically that the SiCNTs/SiCNRs 1D vdWhs can be employed in nanoelectronics devices. 展开更多
关键词 SiCNTs/SiCNRs one-dimensional(1D)van der Waals homojunctions(vdWh) electronic structure external electric field axial strain
下载PDF
S-scheme regulated Ni_(2)P-NiS/twinned Mn_(0.5)Cd_(0.5)S hetero-homojunctions for efficient photocatalytic H_(2)evolution 被引量:1
12
作者 Qiqi Zhang Zhen Wang +3 位作者 Yuhang Song Jun Fan Tao Sun Enzhou Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期148-157,共10页
Effective bulk phase and surface charge separation is critical for charge utilization during the photo-catalytic energy conversion process.In this work,the ternary Ni_(2)P-NiS/twinned Mn_(0.5)Cd_(0.5)S(T-MCS)nanohybri... Effective bulk phase and surface charge separation is critical for charge utilization during the photo-catalytic energy conversion process.In this work,the ternary Ni_(2)P-NiS/twinned Mn_(0.5)Cd_(0.5)S(T-MCS)nanohybrids were successfully constructed via combining Ni_(2)P-NiS with T-MCS solid solution for visible light photocatalytic H_(2)evolution.T-MCS is composed of zinc blende Mn_(0.5)Cd_(0.5)S(ZB-MCS)and wurtzite Mn_(0.5)Cd_(0.5)S(WZ-MCS)and those two alternatively arranged crystal phases endow T-MCS with excellent bulk phase charge separation performance for the slight energy level difference between ZB-MCS and WZ-MCS.S-scheme carriers transfer route between NiS and T-MCS can accelerate the interfacial charge separation and retain the active electrons and holes,meanwhile,co-catalyst Ni_(2)P as electron receiver and proton reduction center can further optimize the H_(2)evolution reaction kinetics based on the surface Schottky barrier effect.The above-formed homo-heterojunctions can establish multiple charge transfer channels in the bulk phase of T-MCS and interface of T-MCS and Ni_(2)P-NiS.Under the synergistic effect of twinned homojunction,S-scheme heterojunction,and Schottky barrier,the ternary Ni_(2)P-NiS/T-MCS com-posite manifested an H_(2)production rate of 122.5 mmol h^(-1)g^(-1),which was 1.33,1.24,and 2.58 times higher than those of the NiS/T-MCS(92.4 mmol h^(-1)g^(-1)),Ni_(2)P/T-MCS(98.4 mmol h^(-1)g^(-1)),and T-MCS(47.5 mmol h^(-1)g^(-1)),respectively.This work demonstrates a promising strategy to develop efficient sul-fides photocatalyst toward targeted solar-driven H_(2)evolution through homo-heterojunction engineering. 展开更多
关键词 Photocatalytic H_(2)evolution Twinned Mn_(0.5)Cd_(0.5)S homojunction S-scheme heterojunction Schottky barrier
原文传递
Built-in electric field induced S-scheme g-C_(3)N_(4)homojunction for efficient photocatalytic hydrogen evolution:Interfacial engineering and morphology control
13
作者 Yongpan Gu Yike Li +2 位作者 Haoqiang Feng Yanan Han Zhongjun Li 《Nano Research》 SCIE EI CSCD 2024年第6期4961-4970,共10页
S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-sche... S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.In-situ Kelvin probe force microscopy(KPFM)confirms the transport of photo-generated electrons from CN to SCN.Density functional theory(DFT)calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective.Femtosecond transient absorption spectrum(fs-TAS)indicates prolonged lifetimes of SCN-tm/CN_(3)(τ1:9.7,τ2:110,andτ3:1343.5 ps)in comparison to those of CN(τ1:4.86,τ2:55.2,andτ3:927 ps),signifying that the construction of homojunction promotes the separation and transport of electron hole pairs,thus favoring the photocatalytic process.Under visible light irradiation,the optimized SCN-tm/CN_(3)exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3μmol·g^(−1)·h^(−1),which is 20.4 times higher than that of CN(265.7μmol·g^(−1)·h^(−1)).Moreover,the homojunction also displays an apparent quantum efficiency of 26.8%at 435 nm as well as ultra-long and ultra-stable cycle ability.This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion. 展开更多
关键词 homojunction built-in electric field morphology control interfacial engineering carrier separation
原文传递
Localized CdS homojunctions with optimal ratio of high and low index facets to dynamically boost H_(2)O splitting into H_(2)energy
14
作者 Xiaojun Wang Yiqi Zhang +2 位作者 Shujuan Jiang Jiakun Su Shaoqing Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期94-100,共7页
Localized CdS homojunctions with optimal ratio of high and low index facets are constructed to dy-namically boost H_(2)O splitting into H_(2)energy by hydrothermal method in combination with calcination.By density fun... Localized CdS homojunctions with optimal ratio of high and low index facets are constructed to dy-namically boost H_(2)O splitting into H_(2)energy by hydrothermal method in combination with calcination.By density functional theory,hall effect,and in situ diffuse reflectance infrared Fourier transform spec-troscopy,it is revealed that photo-irradiated e^(−)and h^(+)can be spatially separated and directionally trans-ferred to the reductive high-index facet{002}and oxidative low-index facet{110}of localized CdS homo-junction induced by Fermi level difference of both high and low index facets to dehydrogenate ^(∗)-OH and coupled ^(∗)-O intermediates for H_(2)and O_(2)yield,respectively,along with a solar conversion into hydrogen of 1.93%by AM 1.5 G irradiation at 65℃.The study work suggests a scientific perspective on the optimal ratio of high and low index facets to understand photo-generated charge carrier transfer dynamically and their photocatalytic principle for H_(2)O splitting reaction in kinetics. 展开更多
关键词 Photocatalytic H_(2)evolution homojunction Localized field Ratio of high low index facets In-situ DRIFTS
原文传递
Enhanced charge separation by continuous homojunction with spatially separated redox sites for hydrogen evolution 被引量:1
15
作者 Mingyuan Yu Tongyu Wang +8 位作者 Chengxi Huang Fang Wu Xuan Liu Hailing Huo Hanwen Jian Zikun Liang Jingjing Ma Erjun Kan Ang Li 《Nano Research》 SCIE EI CSCD 2023年第10期12323-12330,共8页
Photocatalytic hydrogen generation represents a promising strategy for the establishment of a sustainable and environmentally friendly energy reservoir.However,the current solar-to-hydrogen conversion efficiency is no... Photocatalytic hydrogen generation represents a promising strategy for the establishment of a sustainable and environmentally friendly energy reservoir.However,the current solar-to-hydrogen conversion efficiency is not yet sufficient for practical hydrogen production,highlighting the need for further research and development.Here,we report the synthesis of a Sn-doped TiO_(2)continuous homojunction hollow sphere,achieved through controlled calcination time.The incorporation of a gradient doping profile has been demonstrated to generate a gradient in the band edge energy,facilitating carrier orientation migration.Furthermore,the hollow sphere’s outer and inner sides provide spatially separated reaction sites allowing for the separate acceptance of holes and electrons,which enables the rapid utilization of carriers after separation.As a result,the hollow sphere TiO_(2)with gradient Sn doping exhibits a significantly increased hydrogen production rate of 20.1 mmol·g^(−1)·h^(−1).This study offers a compelling and effective approach to the designing and fabricating highly efficient nanostructured photocatalysts for solar energy conversion applications. 展开更多
关键词 continuous homojunction spatially separated reaction sites charge separation hydrogen evolution
原文传递
Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution
16
作者 Xiao Fang Lu Chen +7 位作者 Hongrui Cheng Xiaoqiong Bian Wenhao Sun Kaining Ding Xinghe Xia Xin Chen Jiefang Zhu Yuanhui Zheng 《Nano Research》 SCIE EI CSCD 2023年第7期8782-8792,共11页
Carbon nitride(CN)has attracted intensive attention as a visible light photocatalyst,but the rapid recombination of photogenerated charge carriers limits its photocatalytic activity.Herein,we develop a new strategy to... Carbon nitride(CN)has attracted intensive attention as a visible light photocatalyst,but the rapid recombination of photogenerated charge carriers limits its photocatalytic activity.Herein,we develop a new strategy to construct both homojunction and ohmic junction into CN via selectively introducing metallized CN(MCN),which leads to rapid separation and transfer of photogenerated charge carriers.The polymerization of urea in the presence of KOH creates CN homojunction with amino and cyano groups.The subsequent molten salt treatment induces a new type of cyano-terminated CN that can be converted to MCN through photodoping,forming homojunction and ohmic contact coexisting CN(HOCN).The formed HOCN photocatalyst exhibits a high photocatalytic H_(2)evolution rate of 18.5 mmol·g^(-1)·h^(-1)under visible light irradiation,45-fold higher than that of bulk CN.This strategy provides a new idea for designing ohmic contact between semiconductor and metal,and realizing efficient photocatalysis by improving charge separation and transfer. 展开更多
关键词 carbon nitride PHOTOCATALYSIS homojunction ohmic contact hydrogen evolution
原文传递
Energy-band engineering by 2D MXene doping for high-performance homojunction transistors and logic circuits
17
作者 Leini Wang Gang He +4 位作者 Wenhao Wang Xiaofen Xu Shanshan Jiang Elvira Fortunato Rodrigo Martins 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期41-51,共11页
The homojunction based on Ti_(3)C_(2)T_(x) MXene-doped In_(2)O_(3) and indium oxide as the channel layer is real-ized in high-performance metal oxide thin film transistors(TFTs).Doping of MXene into In_(2)O_(3) result... The homojunction based on Ti_(3)C_(2)T_(x) MXene-doped In_(2)O_(3) and indium oxide as the channel layer is real-ized in high-performance metal oxide thin film transistors(TFTs).Doping of MXene into In_(2)O_(3) results in n-type semiconductor behavior,realizing tunable work function of In_(2)O_(3) from 5.11 to 4.79 eV as MXene content increases from 0 to 2 wt.%.MXene-doped In_(2)O_(3)-based homojunction TFT presents optimal per-formance with electron mobilities of greater than 27.10 cm^(2)/(V s)at 240°C,far exceeding the maximum mobility of 3.91 cm^(2)/(V s)for single-layer In_(2)O_(3)TFTs.The improved performance originates from boosting of a two-dimensional electron gas(2DEG)formed at carefully engineered In_(2)O_(3)/MXene-doped In_(2)O_(3)ox-ide homojunction interface.Besides,the transformation in conduction mechanism leads to better stability of MXene-doped In_(2)O_(3) homojunction devices compared to undoped bilayer In_(2)O_(3).Low-frequency noise further illustrates that doping MXene into In_(2)O_(3) helps to reduce the device trap density,demonstrating excellent electrical performance.A resistor-loaded unipolar inverter based on In_(2)O_(3)/0.5%MXene-In_(2)O_(3)TFT has demonstrated full swing characteristics and a high gain of 13.The effective doping of MXene into constructed homojunction TFTs not only contributes to improved stability,but also provides an ef-fective strategy for designing novel homojunction TFTs for low-cost oxide-based electronics. 展开更多
关键词 MXene-doped In_(2)O_(3) homojunction 2D electron gases Thin film transistor Low frequency noise
原文传递
Built defects of homogeneous junction to enhance the lithium storage capacity of niobium pentoxide materials
18
作者 Huibin Ding Yang Luo +5 位作者 Zihan Song Cong Chen Kai Feng Xiaofei Yang Hongzhang Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期730-737,共8页
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit... Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles). 展开更多
关键词 Niobiumpent oxide homojunction polycrystalline DEFECTS Oxygen vacancy
下载PDF
Homojunction photocatalysts for water splitting 被引量:2
19
作者 Xiangjiu Guan Shichao Zong Shaohua Shen 《Nano Research》 SCIE EI CSCD 2022年第12期10171-10184,共14页
Charge-carrier separation is regarded as one of the critical issues of photocatalytic water splitting and could be accelerated by constructing microscopic junctions in photocatalysts.Homojunction photocatalysts consis... Charge-carrier separation is regarded as one of the critical issues of photocatalytic water splitting and could be accelerated by constructing microscopic junctions in photocatalysts.Homojunction photocatalysts consisting of different forms of semiconductor with identical compositions could inherit the advantages of heterojunction-based photocatalysts in charge separation due to the built-in electric field,while omitting the potential drawbacks of interfacial lattice distortion by providing continuous band bonding.Therefore,homojunction-based photocatalysts have recently drawn growing attention in water splitting.In this review,the synthetic approaches to preparing photocatalysts with various homojunction structures including p-n junction,phase junction,and facet junction were introduced,together with a comprehensive analysis and discussion on the latest progress in the application of photocatalytic water splitting.This review work is expected to inspire more related work with promoted research on designing efficient homojunction-based photocatalytic systems for water splitting. 展开更多
关键词 PHOTOCATALYTIC water splitting homojunction charge separation
原文传递
Tune the electronic structure of MoS_(2)homojunction for broadband photodetection 被引量:1
20
作者 Rui Tao Xianlin Qu +6 位作者 Zegao Wang Fang Li Lei Yang Jiheng Li Dan Wang Kun Zheng Mingdong Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期61-68,共8页
Due to the weak absorption and low light-matter interaction of MoS_(2),intrinsic MoS_(2)photodetector usually has low photoresponse,thus limiting its real application.Herein,MoS_(2)homojunction was constructed by usin... Due to the weak absorption and low light-matter interaction of MoS_(2),intrinsic MoS_(2)photodetector usually has low photoresponse,thus limiting its real application.Herein,MoS_(2)homojunction was constructed by using the chemical vapor deposition grown intrinsic MoS_(2)films and the Nb-doped MoS_(2)films.The results show that the Nb doping will induce p-type doping in MoS_(2),where the electron concentration will decrease by 2.08×10^(12)cm^(–2)after Nb doping.By investigating the photoelectric effect of MoS_(2)/Nb-doped MoS_(2)homojunction-based phototransistor,the tunability of the photoresponse,detectivity as the function of the external field,wavelength,and power of light have been studied in detail.The results show that the photoresponse and detectivity are strongly dependent on the gate voltage due to the external field tuned interlayer photoexcitation attributing to the band bending.The maximum of photoresponse can reach 51.4 A/W,the detectivity can reach 3.0×10^(12)Jones,which is two orders higher than that of intrinsic MoS_(2).Furthermore,by correlating the photoresponse and detectivity with the external field,it is found that the photodetection of MoS_(2)homojunction can be significantly tuned and exhibit well photodetection in infrared.This comprehensive work not only sheds light on the tunable photoexcitation mechanism but also offers a strategy to achieve a high-performance photodetector. 展开更多
关键词 Molybdenum disulfide P-type doping homojunction PHOTORESPONSE TUNABILITY
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部