A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original gener...A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original generalized complex Burgers equation is obtained. This method can find the approximation of arbitrary order of precision simply and reliably.展开更多
In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is cruci...In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.展开更多
Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers syst...Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers system is derived.展开更多
The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper w...The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.展开更多
This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in pl...This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that the 2DRLG-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs).展开更多
The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and ...The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.展开更多
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influen...By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 40876010), the Main Direction Program of the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08), the R & D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806010), the LASG State Key Laboratory Special Fund, the Foundation of E-Institutes of Shanghai Municipal Education Commission (Crant No. E03004) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090164).
文摘A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original generalized complex Burgers equation is obtained. This method can find the approximation of arbitrary order of precision simply and reliably.
文摘In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.
文摘Starting from the symbolic computation system Maple and Riccati equation mapping approach and a linear variable separation approach, a new family of non-traveling wave solutions of the (1 + 1)-dimensional Burgers system is derived.
文摘The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.
文摘This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that the 2DRLG-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs).
基金Project supported by the National Natural Science Foundation of China (Grant No.10871124)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y6110007)
文摘The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.
基金supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences (Grant No. KZCX1-YW-12)the National Key Science Foundation of China (Grant No. 41030855)
文摘By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.