Spiral plate heat exchanger is a traditional compact heat exchanger,and widely used in the occasion of the high heat transfer capacity requirements,such as waste heat recovery. In the situation of energy shortage and ...Spiral plate heat exchanger is a traditional compact heat exchanger,and widely used in the occasion of the high heat transfer capacity requirements,such as waste heat recovery. In the situation of energy shortage and rapid development of heat transfer technology^([1-3]),cylindrical,elliptical and rhombic spiral pile-honeycomb heat transfer models are established^([4-5]). The internal flow and heat transfer are simulated by using CFD software FLUENT15. 0 and RNG k-ε turbulent model,and then the three models are analyzed. The results show that the secondary flow and vortex are induced again in the secondary honeycomb,which further increases the turbulence intensity of the fluid. The thickness of the boundary layer is reduced twice,and the heat transfer effect is better than that of the honeycomb spiral structure. The spiral pile-honeycomb model for the rhombus is better than the models of cylinder and ellipse in heat transfer performance.展开更多
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti...The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.展开更多
文摘Spiral plate heat exchanger is a traditional compact heat exchanger,and widely used in the occasion of the high heat transfer capacity requirements,such as waste heat recovery. In the situation of energy shortage and rapid development of heat transfer technology^([1-3]),cylindrical,elliptical and rhombic spiral pile-honeycomb heat transfer models are established^([4-5]). The internal flow and heat transfer are simulated by using CFD software FLUENT15. 0 and RNG k-ε turbulent model,and then the three models are analyzed. The results show that the secondary flow and vortex are induced again in the secondary honeycomb,which further increases the turbulence intensity of the fluid. The thickness of the boundary layer is reduced twice,and the heat transfer effect is better than that of the honeycomb spiral structure. The spiral pile-honeycomb model for the rhombus is better than the models of cylinder and ellipse in heat transfer performance.
基金supported by National Natural Science Foundation of China (Grant No. 50776021)Doctoral Fund of Ministry of Education of China (Grant No. 20092304110004)
文摘The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.