Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark ...Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.展开更多
Objective:To investigate the effect of honokiol on microglia polarization and the underlying mechanism.Methods:Inflammatory factors were detected using ELISA to determine the optimal concentration of cobalt chloride t...Objective:To investigate the effect of honokiol on microglia polarization and the underlying mechanism.Methods:Inflammatory factors were detected using ELISA to determine the optimal concentration of cobalt chloride to induce,and that of honokiol to treat chronic hypoxia(48 h)in microglia cell line BV2 cells.BV2 cells were divided into four groups:control,chronic hypoxia,chronic hypoxia+honokiol,chronic hypoxia+honokiol+3-TYP(SIRT3 inhibitor).ELISA was used to measure the concentration of supernatant TNFαand IL-1βproteins,qPCR was used to detect the expression of cellular M1 and M2 polarization markers,and biochemical assays were used to detect the level of reactive oxygen species in each group.Western Blot was used to detect protein levels of SIRT3 and upstream inflammatory molecules NLRP3 and caspase1.Results:Chronic cobalt chloride stimulation of BV2 cells at an optimal concentration of 100μmol/L significantly increased the release of inflammatory fac-tors TNFαand IL-1βafter stimulation compared with the control group(P<0.05);compared with the control group,cells in the chronic hypoxia group had down-regulation of SIRT3 protein expression,whereas the ROS levels,NLRP3 and caspase1 protein levels,the M1 polarization marker CD86,iNOS mRNA levels and CD16/32 ratio were upregulated.and honokiol(10μmol/L)significantly up-regulated the SIRT3 protein and mRNA levels of M2 markers Arg-1 and CD206 in chronic hypoxic cells(P<0.05)and down-regulated levels of ROS,NLRP3/caspase1 protein,and mRNA levels of M1 markers(P<0.05),and this anti-oxidative and anti-inflammatory effect was able to be reversed by SIRT3 inhibitor.Conclusion:Honokiol inhibits chronic hypoxia-induced microglia M1 polarization and inflammatory pathway activation,and its anti-inflammatory effects are SIRT3-de-pendent.展开更多
Liquid-phase microextraction with back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC) was investigated for the extraction and determination of magnolol and honokiol in Magnolia of...Liquid-phase microextraction with back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC) was investigated for the extraction and determination of magnolol and honokiol in Magnolia officinalis, a traditional Chinese medicine (TCM), and its pharmaceutical preparations, Huo Xiang Zheng Qi peroral liquid and Xiang Sha Yang Wei pellet. Organic solvent, donor and acceptor phases, stirring rate and extraction limes were all factors which can influence the efficiency of extraction and were all optimized during the course of this work. Linear calibration curves were obtained in concentration ranges of 1,56-156 μg/mL for magnolol and 1.10-110 μg/mL for honokiol. Detection limits (S/N = 3) were 0.10 and 0.07 μg/mL, respectively. The relative recoveries were both in the range of 98.3% - 105.1% and RSD was lower than 2.5% .展开更多
基金The study was supported by the Natural Science Foundation of Jilin Province(Grant No.20200201444JC).
文摘Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.
基金National Natural Science Foundation of China(No.82101280)。
文摘Objective:To investigate the effect of honokiol on microglia polarization and the underlying mechanism.Methods:Inflammatory factors were detected using ELISA to determine the optimal concentration of cobalt chloride to induce,and that of honokiol to treat chronic hypoxia(48 h)in microglia cell line BV2 cells.BV2 cells were divided into four groups:control,chronic hypoxia,chronic hypoxia+honokiol,chronic hypoxia+honokiol+3-TYP(SIRT3 inhibitor).ELISA was used to measure the concentration of supernatant TNFαand IL-1βproteins,qPCR was used to detect the expression of cellular M1 and M2 polarization markers,and biochemical assays were used to detect the level of reactive oxygen species in each group.Western Blot was used to detect protein levels of SIRT3 and upstream inflammatory molecules NLRP3 and caspase1.Results:Chronic cobalt chloride stimulation of BV2 cells at an optimal concentration of 100μmol/L significantly increased the release of inflammatory fac-tors TNFαand IL-1βafter stimulation compared with the control group(P<0.05);compared with the control group,cells in the chronic hypoxia group had down-regulation of SIRT3 protein expression,whereas the ROS levels,NLRP3 and caspase1 protein levels,the M1 polarization marker CD86,iNOS mRNA levels and CD16/32 ratio were upregulated.and honokiol(10μmol/L)significantly up-regulated the SIRT3 protein and mRNA levels of M2 markers Arg-1 and CD206 in chronic hypoxic cells(P<0.05)and down-regulated levels of ROS,NLRP3/caspase1 protein,and mRNA levels of M1 markers(P<0.05),and this anti-oxidative and anti-inflammatory effect was able to be reversed by SIRT3 inhibitor.Conclusion:Honokiol inhibits chronic hypoxia-induced microglia M1 polarization and inflammatory pathway activation,and its anti-inflammatory effects are SIRT3-de-pendent.
基金Natural Science Foundation of Shanxi Province(Grant No.2007011086).
文摘Liquid-phase microextraction with back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC) was investigated for the extraction and determination of magnolol and honokiol in Magnolia officinalis, a traditional Chinese medicine (TCM), and its pharmaceutical preparations, Huo Xiang Zheng Qi peroral liquid and Xiang Sha Yang Wei pellet. Organic solvent, donor and acceptor phases, stirring rate and extraction limes were all factors which can influence the efficiency of extraction and were all optimized during the course of this work. Linear calibration curves were obtained in concentration ranges of 1,56-156 μg/mL for magnolol and 1.10-110 μg/mL for honokiol. Detection limits (S/N = 3) were 0.10 and 0.07 μg/mL, respectively. The relative recoveries were both in the range of 98.3% - 105.1% and RSD was lower than 2.5% .