Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method...Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.展开更多
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV pane...Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.展开更多
A non-incremental time-space algorithm is proposed for numerical. analysis of forming process with the inclusion of geometrical, material, contact-frictional nonlinearities. Unlike the widely used Newton-Raphso...A non-incremental time-space algorithm is proposed for numerical. analysis of forming process with the inclusion of geometrical, material, contact-frictional nonlinearities. Unlike the widely used Newton-Raphson counterpart, the present scheme features an iterative solution procedure on entire time and space domain. Validity and feasibility of foe present scheme are further justiced by the numerical investigation herewith presented.展开更多
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
Incremental algorithm is one of the most popular procedures for constructing Delaunay triangulations (DTs). However, the point insertion sequence has a great impact on the amount of work needed for the construction ...Incremental algorithm is one of the most popular procedures for constructing Delaunay triangulations (DTs). However, the point insertion sequence has a great impact on the amount of work needed for the construction of DTs. It affects the time for both point location and structure update, and hence the overall computational time of the triangulation algorithm. In this paper, a simple deterministic insertion sequence is proposed based on the breadth-first-search on a Kd-tree with some minor modifications for better performance. Using parent nodes as search-hints, the proposed insertion sequence proves to be faster and more stable than the Hilbert curve order and biased randomized insertion order (BRIO), especially for non-uniform point distributions over a wide range of benchmark examples.展开更多
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a...A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.展开更多
We present an incremental network programming mechanism which reprograms wireless sensors quickly by transmitting the incremental changes using the Rsync algorithm;we generate the difference of the two program images ...We present an incremental network programming mechanism which reprograms wireless sensors quickly by transmitting the incremental changes using the Rsync algorithm;we generate the difference of the two program images allowing us to distribute only the key changes. Unlike previous approaches, our design does not assume any prior knowledge of the program code structure and can be applied to any hardware platform. To meet the resource constraints of wireless sensors, we tuned the Rsync algorithm which was originally made for updating binary files among powerful host machines. The sensor node processes the delivery and the decoding of the difference script separately making it easy to extend for multi-hop network programming. We are able to get a speed-up of 9.1 for changing a constant and 2.1 to 2.5 for changing a few lines in the source code.展开更多
It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequ...It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)...光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)结合的复合算法追寻MPP,莱维飞行帮助灰狼算法跳出局部最优,搜寻MPP附近时,切换电导增量算法减少系统振荡,在静态与动态局部遮阴下通过Simulink进行光伏并网仿真验证。研究结果显示,所提复合算法收敛效果快速精确,并且符合并网谐波(total harmonic distortion,THD)含量要求,可保证系统的稳定运行。展开更多
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金Supported by the National Natural Science Foundation of China (30860084,60673014,60263005)the Backbone Young Teachers Foundation of Fujian Normal University(2008100244)the Department of Education Foundation of Fujian Province (ZA09047)~~
文摘Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
文摘Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.
文摘A non-incremental time-space algorithm is proposed for numerical. analysis of forming process with the inclusion of geometrical, material, contact-frictional nonlinearities. Unlike the widely used Newton-Raphson counterpart, the present scheme features an iterative solution procedure on entire time and space domain. Validity and feasibility of foe present scheme are further justiced by the numerical investigation herewith presented.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (10972006 and 11172005)the National Basic Research Program of China (2010CB832701)
文摘Incremental algorithm is one of the most popular procedures for constructing Delaunay triangulations (DTs). However, the point insertion sequence has a great impact on the amount of work needed for the construction of DTs. It affects the time for both point location and structure update, and hence the overall computational time of the triangulation algorithm. In this paper, a simple deterministic insertion sequence is proposed based on the breadth-first-search on a Kd-tree with some minor modifications for better performance. Using parent nodes as search-hints, the proposed insertion sequence proves to be faster and more stable than the Hilbert curve order and biased randomized insertion order (BRIO), especially for non-uniform point distributions over a wide range of benchmark examples.
文摘A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.
文摘We present an incremental network programming mechanism which reprograms wireless sensors quickly by transmitting the incremental changes using the Rsync algorithm;we generate the difference of the two program images allowing us to distribute only the key changes. Unlike previous approaches, our design does not assume any prior knowledge of the program code structure and can be applied to any hardware platform. To meet the resource constraints of wireless sensors, we tuned the Rsync algorithm which was originally made for updating binary files among powerful host machines. The sensor node processes the delivery and the decoding of the difference script separately making it easy to extend for multi-hop network programming. We are able to get a speed-up of 9.1 for changing a constant and 2.1 to 2.5 for changing a few lines in the source code.
文摘It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
文摘光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)结合的复合算法追寻MPP,莱维飞行帮助灰狼算法跳出局部最优,搜寻MPP附近时,切换电导增量算法减少系统振荡,在静态与动态局部遮阴下通过Simulink进行光伏并网仿真验证。研究结果显示,所提复合算法收敛效果快速精确,并且符合并网谐波(total harmonic distortion,THD)含量要求,可保证系统的稳定运行。