期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
1
作者 黄习习 肖敏 +3 位作者 Leszek Rutkowski 包海波 黄霞 曹进德 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期125-140,共16页
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation... A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs. 展开更多
关键词 mobile wireless sensor networks REACTION-DIFFUSION hopf bifurcation hybrid control
下载PDF
Generalized Hopf Bifurcation in a Delay Model of Neutrophil Cells Model
2
作者 Suqi Ma S. J. Hogan 《International Journal of Modern Nonlinear Theory and Application》 2024年第2期11-28,共18页
The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the... The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits. 展开更多
关键词 Generalized hopf bifurcation DDE-Biftool Software Norm Form
下载PDF
Existence of Supercritical Hopf Bifurcation on a Type-Lorenz System
3
作者 Evodio Muñoz-Aguirre Jorge Alvarez-Mena +2 位作者 Pablo Emilio Calderón-Saavedra Josué Ramírez-Ortega Francisco Gabriel Hernández-Zamora 《Journal of Applied Mathematics and Physics》 2023年第3期780-789,共10页
In this paper, a system of Lorenz-type ordinary differential equations is considered and, under some assumptions about the parameter space, the presence of the supercritical non-degenerate Hopf bifurcation is demonstr... In this paper, a system of Lorenz-type ordinary differential equations is considered and, under some assumptions about the parameter space, the presence of the supercritical non-degenerate Hopf bifurcation is demonstrated. The technical tool used consists of the Central Manifold theorem, a well-known formula to calculate the Lyapunov coefficient and Hopf’s Theorem. For particular values of the parameters in the parameter space established in the main result of this work, a graph is presented that describes the evolution of the trajectories, obtained by means of numerical simulation. 展开更多
关键词 Lorenz-Type System Subcritical hopf bifurcation Supercritical hopf bifurcation hopf Theorem
下载PDF
Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh–Rose and FitzHugh–Nagumo neurons with two time delays
4
作者 郭展宏 李志军 +1 位作者 王梦蛟 马铭磷 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期594-607,共14页
A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters... A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters,the existence of Hopf bifurcation near the stable equilibrium point in four cases is derived theoretically,and the validity of the Hopf bifurcation condition is verified by numerical analysis.The results show that the two time delays can make the stable equilibrium point unstable,thus leading to periodic oscillations induced by Hopf bifurcation.Furthermore,the time delays in FHN and HR neurons have different effects on the firing activity of neural network.Complex firing patterns,such as quiescent state,chaotic spiking,and periodic spiking can be induced by the time delay in FHN neuron,while the neural network only exhibits quiescent state and periodic spiking with the change of the time delay in HR neuron.Especially,phase synchronization between the heterogeneous neurons is explored,and the results show that the time delay in HR neurons has a greater effect on blocking the synchronization than the time delay in FHN neuron.Finally,the theoretical analysis is verified by circuit simulations. 展开更多
关键词 MEMRISTOR time delay heterogeneous neurons hopf bifurcation phase synchronization
下载PDF
Hopf bifurcation of nonlinear system with multisource stochastic factors
5
作者 Xinyu Bai Shaojuan Ma +1 位作者 Qianling Zhang Qiyi Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第2期93-97,共5页
The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is red... The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is reduced to an equivalent deterministic nonlinear system by the sequential orthogonal decomposi-tion method and the Karhunen-Loeve(K-L)decomposition theory.Secondly,the critical conditions about the Hopf bifurcation of the equivalent deterministic system are obtained.At the same time the influence of multisource stochastic factors on the Hopf bifurcation for the proposed system is explored.Finally,the theorical results are verified by the numerical simulations. 展开更多
关键词 Multisource stochastic factors Gaussian white noise K-L decomposition hopf bifurcation Random parameter
下载PDF
Hopf Bifurcation of Nonresident Computer Virus Model with Age Structure and Two Delays Effects
6
作者 Yaoyu Dang Hongwu Tan Hui Cao 《Journal of Applied Mathematics and Physics》 2023年第8期2318-2342,共25页
This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the b... This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the basic regeneration number, and obtained the conditions for the existence and the stability of the virus-free equilibrium and the computer virus equilibrium. Theoretical analysis shows the conditions under which the model undergoes Hopf bifurcation in three different cases. The numerical examples are provided to demonstrate the theoretical results. 展开更多
关键词 The Computer Virus Model AGE-STRUCTURE Two Delays Stability hopf bifurcation
下载PDF
HOPF BIFURCATION OF AN OSCILLATOR WITH QUADRATIC AND CUBIC NONLINEARITIES AND WITH DELAYED VELOCITY FEEDBACK 被引量:6
7
作者 王怀磊 王在华 胡海岩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期426-434,共9页
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,th... This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. 展开更多
关键词 delay differential equation stability switches supercritical hopf bifurcation subcritical hopf bifurcation Fredholm alternative
下载PDF
Diffusion-driven instability and Hopf bifurcation in Brusselator system 被引量:2
8
作者 李波 王明新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期825-832,共8页
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stabil... The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system. 展开更多
关键词 Brusselator system hopf bifurcation stability diffusion-driven hopf bifurcation
下载PDF
Hopf bifurcation control of a Pan-like chaotic system 被引量:1
9
作者 Liang Zhang Jia-Shi Tang Qin Han 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期374-379,共6页
This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf ... This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf bifurcation depending on selected values of the system parameters are studied. The region of the stability for the Hopf bifurcation is investigated.By the hybrid control method, a nonlinear controller is designed for changing the Hopf bifurcation point and expanding the range of the stability. Discussions show that with the change of parameters of the controller, the Hopf bifurcation emerges at an expected location with predicted properties and the range of the Hopf bifurcation stability is expanded. Finally,numerical simulation is provided to confirm the analytic results. 展开更多
关键词 hopf bifurcation control Pan-like chaotic system Routh-Hurwtiz hybrid control method stability control high-dimensional hopf bifurcation
下载PDF
Local Hopf bifurcation and global existence of periodic solutions in TCP system
10
作者 徐昌进 唐先华 廖茂新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第6期775-786,共12页
This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifur... This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)). 展开更多
关键词 TCP system STABILITY local hopf bifurcation global hopf bifurcation periodic solution
下载PDF
Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system 被引量:10
11
作者 薛薇 齐国元 +2 位作者 沐晶晶 贾红艳 郭彦岭 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期325-332,共8页
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter va... In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system. 展开更多
关键词 HYPER-CHAOS four-wing chaotic system one equilibrium hopf bifurcation circuit implementation
下载PDF
HOPF BIFURCATION OF A NONLINEAR RESTRAINED CURVED PIPE CONVEYING FLUID BY DIFFERENTIAL QUADRATURE METHOD 被引量:7
12
作者 Wang Lin Ni Qiao Huang Yuying (Department of Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期345-352,共8页
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement ... This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe. 展开更多
关键词 curved fluid conveying pipe hopf bifurcation nonlinear vibration DQM
下载PDF
A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillator 被引量:9
13
作者 Z.H.Wang H.Y.Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期449-454,共6页
In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and... In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and Weibel, respectively. The averaged equation obtained from the modified scheme is simple enough but it retains the required information for the local nonlinear dynamics around an equilibrium. As an application of the present method, the delay value for which a secondary Hopf bifurcation occurs is successfully located for a delayed van der Pol oscillator. 展开更多
关键词 Time delay ·Secondary hopf bifurcation·The averaging technique van der Pol oscillator
下载PDF
Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations 被引量:4
14
作者 Yan ZHOU Wei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期689-706,共18页
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates... The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained. 展开更多
关键词 double hopf bifurcation composite laminated piezoelectric plate periodic solution quasi-periodic solution
下载PDF
Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback 被引量:3
15
作者 刘爽 赵双双 +1 位作者 王兆龙 李海滨 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期345-353,共9页
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t... The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. 展开更多
关键词 electromechanical coupling time delay hopf bifurcation STABILITY
下载PDF
Hopf Bifurcation Control of a Hyperchaotic Circuit System 被引量:3
16
作者 LIANG Cui-Xiang TANG Jia-Shi +1 位作者 LIUSu-Hua HAN Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期457-462,共6页
This paper is concerned with the Hopf bifurcation control of a new hyperchaotic circuit system. The stability of the hyperchaotie circuit system depends on a selected control parameter is studied, and the critical val... This paper is concerned with the Hopf bifurcation control of a new hyperchaotic circuit system. The stability of the hyperchaotie circuit system depends on a selected control parameter is studied, and the critical value of the system parameter at which Hopf bifurcation occurs is investigated. Theoretical analysis give the stability of the Hopf bifurcation. In particular, washout filter aided feedback controllers are designed for delaying the bifurcation point and ensuring the stability of the bifurcated limit cycles. An important feature of the control laws is that they do not result in any change in the set of equilibria. Computer simulation results are presented to confirm the analytical predictions. 展开更多
关键词 hopf bifurcation hyperchaotic circuit system washout filter limit cycle
下载PDF
Calculation of Coefficients of Simplest Normal Forms of Hopf and Generalized Hopf Bifurcations 被引量:3
17
作者 田瑞兰 张琪昌 何学军 《Transactions of Tianjin University》 EI CAS 2007年第1期18-22,共5页
The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling an... The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system. 展开更多
关键词 nonlinear systems hopf bifurcations simplest normal form COEFFICIENT symbolic manipulation
下载PDF
STOCHASTIC HOPF BIFURCATION IN QUASIINTEGRABLE-HAMILTONIAN SYSTEMS 被引量:2
18
作者 甘春标 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期558-566,共9页
A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their a... A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic aver- aging method.Secondly,the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones.Lastly,a quasi-integrable- Hamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure. Moreover,simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure.It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters.Therefore,one can see that the numerical results are consistent with the theoretical predictions. 展开更多
关键词 quasi-integrable-Hamiltonian system Gaussian white noise torus region stochastic hopf bifurcation
下载PDF
Analytical Hopf Bifurcation and Stability Analysis of T System 被引量:2
19
作者 Robert A.VanGorder S.Roy Choudhury 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期609-616,共8页
Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following th... Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes. 展开更多
关键词 extended hopf bifurcation analysis method of multiple scales T system stability analysis
下载PDF
Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems 被引量:1
20
作者 陈衍茂 刘济科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第2期199-206,共8页
The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to ob... The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method. 展开更多
关键词 nonlinear flutter hopf bifurcation SUPERCRITICAL SUBCRITICAL limit cycle oscillation
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部