Horizon control, maintaining the alignment of the shearer's exploitation gradient with the coal seam gradient, is a key technique in longwall mining automation. To identify the coal seam gradient, a geological mod...Horizon control, maintaining the alignment of the shearer's exploitation gradient with the coal seam gradient, is a key technique in longwall mining automation. To identify the coal seam gradient, a geological model of the coal seam was constructed using in-seam seismic surveying technology. By synthesizing the control resolution of the range arm and the geometric characteristics of the coal seam, a gradient identification method based on piecewise linear representation(PLR) is proposed. To achieve the maximum exploitation rate within the shearer's capacity, the control resolution of the range arm is selected as the threshold parameter of PLR. The control resolution significantly influenced the number of line segments and the fitting error. With the decrease of the control resolution from 0.01 to 0.02 m, the number of line segments decreased from 65 to 15, which was beneficial to horizon control. However, the average fitting error increased from 0.055 to 0.14 m, which would induce a decrease in the exploitation rate. To avoid significant deviation between the cutting range and the coal seam, the control resolution of the range arm must be lower than 0.02 m. In a field test, the automated horizon control of the longwall face was realized by coal seam gradient identification.展开更多
The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =...The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =f(x j|t , u j|t ) by using the Lyapunov direct method combining with receding horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.展开更多
For a class of discrete-time singular stochastic systems with multi-state delay,the stabilization problem of receding horizon control(RHC)is concerned.Due to the difficulty in solving the proposed optimization problem...For a class of discrete-time singular stochastic systems with multi-state delay,the stabilization problem of receding horizon control(RHC)is concerned.Due to the difficulty in solving the proposed optimization problem,the RHC stabilization for such systems has not been solved.By adopting the forward and backward equation technique,the optimization problem is solved completely.A sufficient and necessary condition for the optimization controller to have a unique solution is given when the regularization and pulse-free conditions are satisfied.Based on this controller,an RHC stabilization condition is derived,which is in the form of linear matrix inequality.It is proved that the singular stochastic system with multi-state delay is stable in the mean-square sense under appropriate assumptions when the terminal weighting matrix satisfies the given inequality.Numerical examples show that the proposed RHC method is effective in stabilizing singular stochastic systems with multi-state delay.展开更多
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ...The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations a...To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.展开更多
Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematic...Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.展开更多
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits...This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.展开更多
A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and t...A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.展开更多
这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用...这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。展开更多
This paper presents online motion planning for UAV(unmanned aerial vehicle) in complex threat field,including both static threats and moving threats,which can be formulated as a dynamic constrained optimal control pro...This paper presents online motion planning for UAV(unmanned aerial vehicle) in complex threat field,including both static threats and moving threats,which can be formulated as a dynamic constrained optimal control problem.Receding horizon control(RHC) based on differential evolution(DE) algorithm is adopted.A location-predicting model of moving threats is established to assess the value of threat that UAV faces in flight.Then flyable paths can be generated by the control inputs which are optimized by DE under the guidance of the objective function.Simulation results demonstrate that the proposed method not only generates smooth and flyable paths,but also enables UAV to avoid threats efficiently and arrive at destination safely.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
Necessary conditions for optimality are proved for smooth infinite horizon optimal control problems with unilateral state constraints (pathwise constraints) and with terminal conditions on the states at the infinite h...Necessary conditions for optimality are proved for smooth infinite horizon optimal control problems with unilateral state constraints (pathwise constraints) and with terminal conditions on the states at the infinite horizon. The aim of the paper is to obtain strong necessary conditions including transversality conditions at infinity, which in many cases lead to a set of candidates for optimality containing only a few elements, similar to what is the case in finite horizon problems. However, strong growth conditions are needed for the results to hold.展开更多
In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation o...In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.展开更多
A new control mode is proposed for a networked control system whose network-induced delay is longer than a sampling period. A time-division algorithm is presented to implement the control and for the mathematical mode...A new control mode is proposed for a networked control system whose network-induced delay is longer than a sampling period. A time-division algorithm is presented to implement the control and for the mathematical modeling of such networked control system. The infinite horizon controller is designed, which renders the networked control system mean square exponentially stable.Simulation results show the validity of the proposed theory.展开更多
The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs....The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs. To avoid this, an efficient and fast algorithm based on aggregation optimization is proposed in this paper. It only optimizes the current control action at time instant k , while other future control sequences in the optimization horizon are approximated off line by the linear feedback control sequence, so the on line optimization can be converted into a low dimensional quadratic programming problem. Input constraints can be well handled in this scheme. The comparable performance is achieved with existing standard model predictive control algorithm. Simulation results well demonstrate its effectiveness.展开更多
基金supported in part by the Funds of the National Natural Science Foundation of China (Nos. 51874279 and U1610251)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Horizon control, maintaining the alignment of the shearer's exploitation gradient with the coal seam gradient, is a key technique in longwall mining automation. To identify the coal seam gradient, a geological model of the coal seam was constructed using in-seam seismic surveying technology. By synthesizing the control resolution of the range arm and the geometric characteristics of the coal seam, a gradient identification method based on piecewise linear representation(PLR) is proposed. To achieve the maximum exploitation rate within the shearer's capacity, the control resolution of the range arm is selected as the threshold parameter of PLR. The control resolution significantly influenced the number of line segments and the fitting error. With the decrease of the control resolution from 0.01 to 0.02 m, the number of line segments decreased from 65 to 15, which was beneficial to horizon control. However, the average fitting error increased from 0.055 to 0.14 m, which would induce a decrease in the exploitation rate. To avoid significant deviation between the cutting range and the coal seam, the control resolution of the range arm must be lower than 0.02 m. In a field test, the automated horizon control of the longwall face was realized by coal seam gradient identification.
文摘The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =f(x j|t , u j|t ) by using the Lyapunov direct method combining with receding horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.
基金the Natural Science Foundation of Shandong Province (No.ZR2020MF063)the National Natural Science Foundation of China (No.61873332)。
文摘For a class of discrete-time singular stochastic systems with multi-state delay,the stabilization problem of receding horizon control(RHC)is concerned.Due to the difficulty in solving the proposed optimization problem,the RHC stabilization for such systems has not been solved.By adopting the forward and backward equation technique,the optimization problem is solved completely.A sufficient and necessary condition for the optimization controller to have a unique solution is given when the regularization and pulse-free conditions are satisfied.Based on this controller,an RHC stabilization condition is derived,which is in the form of linear matrix inequality.It is proved that the singular stochastic system with multi-state delay is stable in the mean-square sense under appropriate assumptions when the terminal weighting matrix satisfies the given inequality.Numerical examples show that the proposed RHC method is effective in stabilizing singular stochastic systems with multi-state delay.
基金co-supported by the National Natural Science Foundation of China(Nos. 61273349 and 61573043)
文摘The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金supported by the National Natural Science Foundation of China(Nos.61174221 and 61402039)
文摘To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072 and 60604009)Aeronautical Science Foundation of China (Grant No. 2008ZC01006)+4 种基金Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)the Fundamental Research Funds for the Central Universities of China (Grant No. YWF-10-01-A18)Beijing NOVA Program Foundation (Grant No. 2007A017)open Fund of the State Key Laboratory of Virtual Reality Technology and SystemsOpen Fund of the Provincial Key Laboratory for Information Processing Technology, Suzhou University, China (Grant No. KJS1020)
文摘Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.
基金supported by the National Defense Foundation of China(No.403060103)
文摘This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.
文摘A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.
基金Supported by National 'Natural Science Foundation of China (60374027), Program for New Century Excellent Talents in University (2004)
文摘这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。
基金National Science Fund for Distinguished Young Scholars(60925011)
文摘This paper presents online motion planning for UAV(unmanned aerial vehicle) in complex threat field,including both static threats and moving threats,which can be formulated as a dynamic constrained optimal control problem.Receding horizon control(RHC) based on differential evolution(DE) algorithm is adopted.A location-predicting model of moving threats is established to assess the value of threat that UAV faces in flight.Then flyable paths can be generated by the control inputs which are optimized by DE under the guidance of the objective function.Simulation results demonstrate that the proposed method not only generates smooth and flyable paths,but also enables UAV to avoid threats efficiently and arrive at destination safely.
基金Supported by National Natural Science Foundation of China (60574016), the National Science Foundation for Distinguished Young Scholars of China (60825304), and the Taishan Scholar Program of Shandong Province
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
文摘Necessary conditions for optimality are proved for smooth infinite horizon optimal control problems with unilateral state constraints (pathwise constraints) and with terminal conditions on the states at the infinite horizon. The aim of the paper is to obtain strong necessary conditions including transversality conditions at infinity, which in many cases lead to a set of candidates for optimality containing only a few elements, similar to what is the case in finite horizon problems. However, strong growth conditions are needed for the results to hold.
基金This work was supported by the National Science Foundation (ECS-0501451)Army Research Office (W91NF-05-1-0314).
文摘In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.
文摘A new control mode is proposed for a networked control system whose network-induced delay is longer than a sampling period. A time-division algorithm is presented to implement the control and for the mathematical modeling of such networked control system. The infinite horizon controller is designed, which renders the networked control system mean square exponentially stable.Simulation results show the validity of the proposed theory.
文摘The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs. To avoid this, an efficient and fast algorithm based on aggregation optimization is proposed in this paper. It only optimizes the current control action at time instant k , while other future control sequences in the optimization horizon are approximated off line by the linear feedback control sequence, so the on line optimization can be converted into a low dimensional quadratic programming problem. Input constraints can be well handled in this scheme. The comparable performance is achieved with existing standard model predictive control algorithm. Simulation results well demonstrate its effectiveness.