The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be...The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.展开更多
Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnos...Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.展开更多
Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree ...Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.展开更多
Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes(ARGs)in urban aquatic ecosystems.However,limited information is available concerning the ARG profiles and the forces responsible f...Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes(ARGs)in urban aquatic ecosystems.However,limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems.Here,we employed high-throughput quantitative PCR(HT-q PCR)to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon,China.The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments,highlighting the role of anthropogenic activities in ARG pollution.Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-,Deltaproteobacteria,Bacteroidetes,Euryarchaeota,Firmicutes and Synergistetes were the potential hosts of ARGs.The partial least squares-path modeling(PLS-PM)analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles,via biotic factors,respectively.The horizontal(mediated by mobile genetic elements)and vertical(mediated by prokaryotic communities)gene transfer may directly contribute the most to drive the abundance and composition of ARGs,respectively.Furthermore,the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes.Overall,this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.展开更多
Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation i...Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.展开更多
A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical syst...A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.展开更多
We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizont...We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.展开更多
The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
A discussion of the mass transport of the Hadley circulation is presented, with regard to its longitudinal structure. Data from the NCEP/NCAR reanalysis data set for the period 1948-2005 is examined, focusing on the s...A discussion of the mass transport of the Hadley circulation is presented, with regard to its longitudinal structure. Data from the NCEP/NCAR reanalysis data set for the period 1948-2005 is examined, focusing on the solsticial seasons of June-August and December-February. Quantitative estimates have been extracted from the data to observe connections between the zonal mean of the upper tropospheric north/south mass transports and their relationship to the driving factor of tropical precipitation (implying latent heat release) and subsidence in the subtropical high pressure belts. The longitudinal structure of this flow is then examined with regard to these three main variables. The poleward upper tropospheric transport has four (JJA) or three (DJF) main branches, which link regions of major precipitation with corresponding regions of large subsidence, and one (June, July, August) or two (December, January, February) reverse branches. This structure has remained stable over the past sixty years. Although the total upper tropospheric transport in each season is less than the total sinking transport in the target subtropical high pressure belt, this does not apply to the individual branches, the balance being made up by the upper tropospheric reverse transports. An analysis of correlations between all of these various components shows, however, that the complete picture is more complex, with some precipitation regions being linked to subsidence regions outside their own branch.展开更多
The estimate of seismic site effects by experimental approaches is based on different assumptions aimed at simplifying the complex actual site conditions and related uncertainties.However,the reliability of the result...The estimate of seismic site effects by experimental approaches is based on different assumptions aimed at simplifying the complex actual site conditions and related uncertainties.However,the reliability of the results can increase if the experimental data is focused on quite strong seismic sequences and the on-site acquisition of a large number of signals is deemed strategic for the assessment of the expected phenomena.Based on these considerations,the ground motion at the Red Zone sector of Amatrice hill,violently struck by the 2016-2017 Central Italy seismic sequence,was analyzed via an observational approach.A large set of weak motions(moment magnitude Mw 2.5-3.9)was analyzed in this study by means of standard(SSR)and horizontal to vertical(HVSR)spectral ratio techniques.The results from the experimental analysis of the site effects by using weak motion and noise signals show a significant amplification at the top of Amatrice hill with a remarkable polarization of the motion and changes in spectral shapes according to the topographic setting of the relief.展开更多
In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method...In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.展开更多
Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was a...Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.展开更多
In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the per...In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.展开更多
An experimental field study was conducted at the University of California at Santa Cruz USA to determine if radar cross section signals were different between a person without wearing any wires and a person wearing bo...An experimental field study was conducted at the University of California at Santa Cruz USA to determine if radar cross section signals were different between a person without wearing any wires and a person wearing both a suicide vest and wires with (without) loops in the wires. The data was collected using the GunnPlexer Doppler radar at 12.5 GHz at various safe distances using various subjects both without any wires and wearing a suicide vest with detonation wires and with detonation wires and loops. The raw data was separated in its horizontal and vertical polarization signals (HH and VV). The analysis of these two HH and VV polarization signals from the data allowed several promising metrics to be created. These metrics were individually tested in a Monte Carlo simulation which is in order to determine the probability of detection of a would-be suicide bomber. The results of the Monte Carlo simulation showed that the metrics yielded a probability of successful detection of slightly over 98% and a false positive rate of just less than 2 %. This research and its result are encouraging and suggest further testing to insure that suicide bombers can be found prior to their detonation of their bombs at a safe range.展开更多
Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated th...Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated the impact of different operating speeds when negotiating combined horizontal and vertical curves under unfavorable environmental conditions on Wyoming’s interstates via vehicle dynamics simulation software.The simulation tools provided the acting forces on each tire of the vehicle and the side friction(skidding)margins.This allowed for examining the interaction between vehicle dynamics and road geometry in such alignments.Also,linear regression analysis was implemented to investigate the skidding margins based on the simulation results to demonstrate when a vehicle is more likely to deviate from its desired trajectory.Specifically,this examines the contributing factors that significantly influence the skidding margins.The results indicated that:1)the skidding margins are dramatically decreased by adverse weather conditions even with lower degree of curvature and gradient values of combined curves and more particularly at higher operating speeds conditions.Increasing the vehicle speed on the curve by 10%,the skidding margin dropped by 15%.2)Compared to heavy trucks and sports utility vehicles(SUVs),passenger cars require the highest side friction demand.3)The effect of applying brakes on vehicle stability depends on the road surface condition;applying the brakes on snowy road surfaces increases the potential of vehicle skidding especially for heavy trucks.This study assessed the curve speed limits and showed how important to assign safe and appropriate limits speed since the skidding likelihood is significantly sensitive to the vehicle speeds.This study is beneficial to Wyoming’s roadway agencies since hazardous sections having combined horizontal and vertical curves are identified.Also,critical situations that require additional attention from law enforcement agencies are pinpointed.Finally,recommendations that are valuable to roadway agencies are made based on this study’s findings.展开更多
A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindr...A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindrical annulus filled with saturated porous media (sand silica) with fins attached to the inner cylinder. A single electric coil placed around the inner cylinder to generate a magnetic field. The governing equations which used are continuity, momentum (using Darcy's law) and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using Fortran 90 program. The parameters affected on the system are Rayleigh number ranging within (102 ~ Ra* 〈 104), and MHD (Mn) (0 〈_ Mn 〈_ 100) and radius ratio Rr (0.225, 0.338 and 0.435). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer decrease with the increase of magnetohydrodynamic. It was found that the average Nusselt number increase with Ra* and decrease with H~ Mn and Rr. A correlation for the average Nusselt number in terms of Ra* and Mn, has been developed for the inner cylinder.展开更多
Stratospheric water vapor variations,which may play an important role in surface climate,have drawn extensive studies.Here,the variation in stratospheric water vapor is investigated by using data from observations of ...Stratospheric water vapor variations,which may play an important role in surface climate,have drawn extensive studies.Here,the variation in stratospheric water vapor is investigated by using data from observations of the Microwave Limb Sounder(MLS)on the Aura satellite,from the ECMWF Interim Reanalysis(ERAI),and simulations by the Whole Atmosphere Community Climate Model(WACCM).We find that the differences of annual mean stratospheric water vapor among these datasets may be partly caused by the differences in vertical transports.Using budget analysis,we find that the upward transport of water vapor at 100 h Pa is mainly located over the Pacific warm pool region and South America in the equatorial tropics in boreal winter and over the southeast of the South Asian high and south of North America in boreal summer.It is found that temperature averaged over regions with upward transport is a better indicator of interannual variability of tropical mean stratospheric water vapor than the tropical mean temperature.It seems that the distributions of the seasonal cycle amplitude of lower stratospheric water vapor in the tropics can also be impacted by the vertical transport.The radiative effects of the interannual changes in water vapor in the lowermost stratosphere are underestimated by approximately 29%in both ERAI and WACCM compared to MLS,although the interannual variations of water vapor in the lowermost stratosphere are dramatically overestimated in ERAI and WACCM.The results here indicate that the radiative effect of long-term changes in water vapor in the lowermost stratosphere may be underestimated in both ERAI and WACCM simulations.展开更多
基金financially supported by the China National Funds for Distinguished Young Scholars(Grant No.51222904)the National Natural Science Foundation of China(Grant No.51379039)
文摘The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.
基金National Key Basic Research Development Program“973”(2013CB430103)State Key Laboratory of Severe Weather,Chinese Academy Meteorological Sciences(2015LASW-A07)Project Supported by the Jiangsu Province Ordinary University Graduate Student Scientific Research and Innovation Program(CXZZ12_0495)
文摘Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.
基金supported by the National Natural Science Foundation of China[Grant No.61772160].
文摘Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.
基金supported by the National Natural Science Foundation of China(Nos.31470539 and U1805244)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0503)+1 种基金the 9th China-Croatia Science and Technology cooperation committee program(No.9–21)supported by the China Scholarship Council(No.201804910668)。
文摘Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes(ARGs)in urban aquatic ecosystems.However,limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems.Here,we employed high-throughput quantitative PCR(HT-q PCR)to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon,China.The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments,highlighting the role of anthropogenic activities in ARG pollution.Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-,Deltaproteobacteria,Bacteroidetes,Euryarchaeota,Firmicutes and Synergistetes were the potential hosts of ARGs.The partial least squares-path modeling(PLS-PM)analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles,via biotic factors,respectively.The horizontal(mediated by mobile genetic elements)and vertical(mediated by prokaryotic communities)gene transfer may directly contribute the most to drive the abundance and composition of ARGs,respectively.Furthermore,the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes.Overall,this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.
基金funded by the National Natural Science Foundation of China[grant numbers 41474001,41830110]the Fundamental Research Funds for Central Universities[grant number 2018B58214]+2 种基金the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation[grant number 13-01-05]the Major Scientific and Technological Projects of Jiangxi Water Resources Department[grant number kt201322]the Natural Science Foundation of Jiangsu Province,China[grant number BK20170869]。
文摘Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.
基金the National Natural Science Foundation of China(No.10471117)
文摘A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.
基金The project supported by National Natural Science Foundation of China under Grant No.10626016China Postdoctor Science Foundation of Henan University under Grant No.05YBZR014
文摘We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.
文摘A discussion of the mass transport of the Hadley circulation is presented, with regard to its longitudinal structure. Data from the NCEP/NCAR reanalysis data set for the period 1948-2005 is examined, focusing on the solsticial seasons of June-August and December-February. Quantitative estimates have been extracted from the data to observe connections between the zonal mean of the upper tropospheric north/south mass transports and their relationship to the driving factor of tropical precipitation (implying latent heat release) and subsidence in the subtropical high pressure belts. The longitudinal structure of this flow is then examined with regard to these three main variables. The poleward upper tropospheric transport has four (JJA) or three (DJF) main branches, which link regions of major precipitation with corresponding regions of large subsidence, and one (June, July, August) or two (December, January, February) reverse branches. This structure has remained stable over the past sixty years. Although the total upper tropospheric transport in each season is less than the total sinking transport in the target subtropical high pressure belt, this does not apply to the individual branches, the balance being made up by the upper tropospheric reverse transports. An analysis of correlations between all of these various components shows, however, that the complete picture is more complex, with some precipitation regions being linked to subsidence regions outside their own branch.
文摘The estimate of seismic site effects by experimental approaches is based on different assumptions aimed at simplifying the complex actual site conditions and related uncertainties.However,the reliability of the results can increase if the experimental data is focused on quite strong seismic sequences and the on-site acquisition of a large number of signals is deemed strategic for the assessment of the expected phenomena.Based on these considerations,the ground motion at the Red Zone sector of Amatrice hill,violently struck by the 2016-2017 Central Italy seismic sequence,was analyzed via an observational approach.A large set of weak motions(moment magnitude Mw 2.5-3.9)was analyzed in this study by means of standard(SSR)and horizontal to vertical(HVSR)spectral ratio techniques.The results from the experimental analysis of the site effects by using weak motion and noise signals show a significant amplification at the top of Amatrice hill with a remarkable polarization of the motion and changes in spectral shapes according to the topographic setting of the relief.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172012)
文摘In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.
文摘Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.
文摘In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.
文摘An experimental field study was conducted at the University of California at Santa Cruz USA to determine if radar cross section signals were different between a person without wearing any wires and a person wearing both a suicide vest and wires with (without) loops in the wires. The data was collected using the GunnPlexer Doppler radar at 12.5 GHz at various safe distances using various subjects both without any wires and wearing a suicide vest with detonation wires and with detonation wires and loops. The raw data was separated in its horizontal and vertical polarization signals (HH and VV). The analysis of these two HH and VV polarization signals from the data allowed several promising metrics to be created. These metrics were individually tested in a Monte Carlo simulation which is in order to determine the probability of detection of a would-be suicide bomber. The results of the Monte Carlo simulation showed that the metrics yielded a probability of successful detection of slightly over 98% and a false positive rate of just less than 2 %. This research and its result are encouraging and suggest further testing to insure that suicide bombers can be found prior to their detonation of their bombs at a safe range.
基金the generous financial support of the Wyoming Department of Transportation (WYDOT)Mountain-Plains Consortium (MPC) (Grant number: 69A3551747108 (FAST Act)) for this study
文摘Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated the impact of different operating speeds when negotiating combined horizontal and vertical curves under unfavorable environmental conditions on Wyoming’s interstates via vehicle dynamics simulation software.The simulation tools provided the acting forces on each tire of the vehicle and the side friction(skidding)margins.This allowed for examining the interaction between vehicle dynamics and road geometry in such alignments.Also,linear regression analysis was implemented to investigate the skidding margins based on the simulation results to demonstrate when a vehicle is more likely to deviate from its desired trajectory.Specifically,this examines the contributing factors that significantly influence the skidding margins.The results indicated that:1)the skidding margins are dramatically decreased by adverse weather conditions even with lower degree of curvature and gradient values of combined curves and more particularly at higher operating speeds conditions.Increasing the vehicle speed on the curve by 10%,the skidding margin dropped by 15%.2)Compared to heavy trucks and sports utility vehicles(SUVs),passenger cars require the highest side friction demand.3)The effect of applying brakes on vehicle stability depends on the road surface condition;applying the brakes on snowy road surfaces increases the potential of vehicle skidding especially for heavy trucks.This study assessed the curve speed limits and showed how important to assign safe and appropriate limits speed since the skidding likelihood is significantly sensitive to the vehicle speeds.This study is beneficial to Wyoming’s roadway agencies since hazardous sections having combined horizontal and vertical curves are identified.Also,critical situations that require additional attention from law enforcement agencies are pinpointed.Finally,recommendations that are valuable to roadway agencies are made based on this study’s findings.
文摘A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindrical annulus filled with saturated porous media (sand silica) with fins attached to the inner cylinder. A single electric coil placed around the inner cylinder to generate a magnetic field. The governing equations which used are continuity, momentum (using Darcy's law) and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using Fortran 90 program. The parameters affected on the system are Rayleigh number ranging within (102 ~ Ra* 〈 104), and MHD (Mn) (0 〈_ Mn 〈_ 100) and radius ratio Rr (0.225, 0.338 and 0.435). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer decrease with the increase of magnetohydrodynamic. It was found that the average Nusselt number increase with Ra* and decrease with H~ Mn and Rr. A correlation for the average Nusselt number in terms of Ra* and Mn, has been developed for the inner cylinder.
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0604)Key Laboratory of Middle Atmosphere and Global Environment Observation(LAGEO-2020-09)+3 种基金Fundamental Research Funds for the Central Universitiessupported by the National Natural Science Foundation of China(41530423,41761144072,and 41888101)grants from the Discovery Program of the Natural Sciences and Engineering Research Council of Canada(RGPIN-2019-04511)from the Canadian Space Agency(16SUASURDC)。
文摘Stratospheric water vapor variations,which may play an important role in surface climate,have drawn extensive studies.Here,the variation in stratospheric water vapor is investigated by using data from observations of the Microwave Limb Sounder(MLS)on the Aura satellite,from the ECMWF Interim Reanalysis(ERAI),and simulations by the Whole Atmosphere Community Climate Model(WACCM).We find that the differences of annual mean stratospheric water vapor among these datasets may be partly caused by the differences in vertical transports.Using budget analysis,we find that the upward transport of water vapor at 100 h Pa is mainly located over the Pacific warm pool region and South America in the equatorial tropics in boreal winter and over the southeast of the South Asian high and south of North America in boreal summer.It is found that temperature averaged over regions with upward transport is a better indicator of interannual variability of tropical mean stratospheric water vapor than the tropical mean temperature.It seems that the distributions of the seasonal cycle amplitude of lower stratospheric water vapor in the tropics can also be impacted by the vertical transport.The radiative effects of the interannual changes in water vapor in the lowermost stratosphere are underestimated by approximately 29%in both ERAI and WACCM compared to MLS,although the interannual variations of water vapor in the lowermost stratosphere are dramatically overestimated in ERAI and WACCM.The results here indicate that the radiative effect of long-term changes in water vapor in the lowermost stratosphere may be underestimated in both ERAI and WACCM simulations.