In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were ca...In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected.展开更多
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ...The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
To investigate the temperature distribution and solidification shell profile in a continuous casting process for round bars, transient mathematical models have been developed to describe the thermal process. Then Fini...To investigate the temperature distribution and solidification shell profile in a continuous casting process for round bars, transient mathematical models have been developed to describe the thermal process. Then Finite Element Method (FEM) has been applied to simulate the solidification process. Parameters including casting speed, casting temperature and cooling conditions have been analyzed. It is shown that different parameters have different influence on the thermal process and must be carefully controlled in continuous casting process. Finally, the simulated results are compared with the experimental ones.展开更多
Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical...Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical properties of the alloy as well as its deformation mechanism were investigated. The results showed that the as-cast alloy plate had columnar grains along the length direction, good surface quality and elongation of 35%, which was directly large-reduction cold rolled without surface treatment, and the accumulative cold rolling reduction reached 98%. When the reduction was small(20%), numerous dislocations and dislocation cells formed, and the deformation mechanism was dislocation slip. When the reduction was 40%, deformation twins appeared, and interactions between twins and dislocation cells induced strip-like dislocation cells. When the reduction exceeded 60%, shear bands formed and apparent crystal rotation in the micro-region happened. Further increasing the reduction, the amount of the shear bands rose and they interacted with each other, which refined the grains apparently. The tensile strength and hardness increased from 353 MPa and HV 119 of the as-cast alloy to 625 MPa and HV 208 with 95% reduction, respectively, and the elongation reduced from 35% to 7.6%. A process of HCCM horizontal continuous casting-cold rolling can work as a novel compact method to fabricate Cu-Be alloy sheet.展开更多
On the interface of the Cu-Al composite plate from horizontal continuous casting,the eutectic microstructure layer thickness ac-counts for more than 90%of the total interface thickness,and the deformation in rolling f...On the interface of the Cu-Al composite plate from horizontal continuous casting,the eutectic microstructure layer thickness ac-counts for more than 90%of the total interface thickness,and the deformation in rolling forming plays an important role in the quality of the composite plate.The eutectic microstructure material on the interface of the Cu-Al composite plate was prepared by changing the cooling rate of ingot solidification and the deformation in hot compression was investigated.The results show that when the deformation temperature is over 300℃,the softening effect of dynamic recrystallization ofα-Al is greater than the hardening effect,and uniform plastic deformation of eutectic microstructure is caused.The constitutive equation of flow stress in the eutectic microstructure layer was established by Arrhenius hy-perbolic-sine mathematics model,providing a reliable theoretical basis for the deformation of the Cu-Al composite plate.展开更多
Compared to traditional high-pressure die casting(HPDC),horizontal squeeze casting(HSC)is a more promising way to fabricate high-integrity castings,owing to a reduced number of gas and shrinkage porosities produced in...Compared to traditional high-pressure die casting(HPDC),horizontal squeeze casting(HSC)is a more promising way to fabricate high-integrity castings,owing to a reduced number of gas and shrinkage porosities produced in the casting.In this paper,the differences between HSC and HPDC are assessed,through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences.Equipment development and related applications are also reviewed.Furthermore,numerical simulation is used to analyze the three fundamental characteristics of HSC:slow cavity filling,squeeze feeding and slow sleeve filling.From this,a selection principle is given based on the three related critical casting parameters:cavity filling velocity,gate size and sleeve filling velocity.Finally,two specific applications of HSC are introduced,and the future direction of HSC development is discussed.展开更多
In order to quantify the understanding of crack formation in Horizontal Continuous Casting billet.the two-dimensional unsteady state mathematical model for heat transfer and elas-toplastic stress model have been estab...In order to quantify the understanding of crack formation in Horizontal Continuous Casting billet.the two-dimensional unsteady state mathematical model for heat transfer and elas-toplastic stress model have been established.Using these models to calculate the thermal stress which occurred both during surface reheating of 150× 150 mm billet which is just taken out of mold and during temperature drop in billet centre near the end of solidification,the reasonable crack formation criteria for about 0.45%carbon steel have been proposed as follows:In high temperature brittle zone higher than 1300℃,the critical tensile strength is about 170-390 N/cm^2,the critical strain to fracture is about 0.10%- 0.24%.展开更多
An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried ou...An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.展开更多
The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequen...The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.展开更多
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast...The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.展开更多
It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,th...It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.展开更多
The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were pro...The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.展开更多
To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless ...To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.展开更多
A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface ci...A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface circuit for stroke measurements were given out.An effective method was provided,which made the process parameters progressively optimize under the software environment using friendly interface of person-and-computer communication.This method was also adaptable to optimize parameters of other production process which are hard to model.展开更多
7075 aluminum alloy ingot with the diameter izontal direct chill casting in different casting of 100 mm has been produced by horspeed. The effect of the casting speed on the ingot surface and subsurface layer was stud...7075 aluminum alloy ingot with the diameter izontal direct chill casting in different casting of 100 mm has been produced by horspeed. The effect of the casting speed on the ingot surface and subsurface layer was studied by surface observation and subsurface structure analysis. It was found that increasing the casting speed results in the adding of segregation knots in the ingot surface. The thickness of the dendrite microstrueture layer in the subsurface reduces with increasing the casting speed. And the elements of Zn, Cu and Mg enrich in the coarse dendrite microstructure layer of the ingot.展开更多
The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and micros...The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and microstructures of the bonding interface are observed.The results show that cladding hollow billets combine the external and internal layers by metallurgical bonding without mixing when the pouring temperature of the external liquid metal is 903 K.The diffusion region with the thickness of 25 μm can be seen clearly,where mutual diffusion of Si and Mn atoms takes place. In addition,the intermetallic compound Al_(12)(FeMn)_3Si_2 is formed in the interface.展开更多
A program on the solidification process of horizontal centrifugal casting coupled with eutectic carbides segregation has been developed in this paper. Due to the geometrical features of work roll, a cylindrical coordi...A program on the solidification process of horizontal centrifugal casting coupled with eutectic carbides segregation has been developed in this paper. Due to the geometrical features of work roll, a cylindrical coordinate system was used. The temperature field of the outer layer at the end of filling process was imported as the initial temperature condition for the solidification process. The model of eutectic carbides segregation caused by different densities between eutectic MC and the molten steel was coupled in the program. The temperature field of the outer layer of work roll during horizontal centrifugal casting process was investigated. Results show that the outer layer has a "sandwich shape" solid fraction manner. Results also indicate that the segregation of eutectic MC is quite severe during centrifugal casting process. It forms four zones of different content of carbides in radial direction. The simulated results of MC carbides segregation phenomenon agree with the experimental observations.展开更多
文摘In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected.
基金Project(50674066)supported by the National Natural Science Foundation of China
文摘The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
文摘To investigate the temperature distribution and solidification shell profile in a continuous casting process for round bars, transient mathematical models have been developed to describe the thermal process. Then Finite Element Method (FEM) has been applied to simulate the solidification process. Parameters including casting speed, casting temperature and cooling conditions have been analyzed. It is shown that different parameters have different influence on the thermal process and must be carefully controlled in continuous casting process. Finally, the simulated results are compared with the experimental ones.
基金Project(2016YFB0301404)supported by the National Key R&D Program of China。
文摘Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical properties of the alloy as well as its deformation mechanism were investigated. The results showed that the as-cast alloy plate had columnar grains along the length direction, good surface quality and elongation of 35%, which was directly large-reduction cold rolled without surface treatment, and the accumulative cold rolling reduction reached 98%. When the reduction was small(20%), numerous dislocations and dislocation cells formed, and the deformation mechanism was dislocation slip. When the reduction was 40%, deformation twins appeared, and interactions between twins and dislocation cells induced strip-like dislocation cells. When the reduction exceeded 60%, shear bands formed and apparent crystal rotation in the micro-region happened. Further increasing the reduction, the amount of the shear bands rose and they interacted with each other, which refined the grains apparently. The tensile strength and hardness increased from 353 MPa and HV 119 of the as-cast alloy to 625 MPa and HV 208 with 95% reduction, respectively, and the elongation reduced from 35% to 7.6%. A process of HCCM horizontal continuous casting-cold rolling can work as a novel compact method to fabricate Cu-Be alloy sheet.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0707303)the National Natural Science Foundation for Distinguished Young Scholars of China(No.51925401).
文摘On the interface of the Cu-Al composite plate from horizontal continuous casting,the eutectic microstructure layer thickness ac-counts for more than 90%of the total interface thickness,and the deformation in rolling forming plays an important role in the quality of the composite plate.The eutectic microstructure material on the interface of the Cu-Al composite plate was prepared by changing the cooling rate of ingot solidification and the deformation in hot compression was investigated.The results show that when the deformation temperature is over 300℃,the softening effect of dynamic recrystallization ofα-Al is greater than the hardening effect,and uniform plastic deformation of eutectic microstructure is caused.The constitutive equation of flow stress in the eutectic microstructure layer was established by Arrhenius hy-perbolic-sine mathematics model,providing a reliable theoretical basis for the deformation of the Cu-Al composite plate.
文摘Compared to traditional high-pressure die casting(HPDC),horizontal squeeze casting(HSC)is a more promising way to fabricate high-integrity castings,owing to a reduced number of gas and shrinkage porosities produced in the casting.In this paper,the differences between HSC and HPDC are assessed,through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences.Equipment development and related applications are also reviewed.Furthermore,numerical simulation is used to analyze the three fundamental characteristics of HSC:slow cavity filling,squeeze feeding and slow sleeve filling.From this,a selection principle is given based on the three related critical casting parameters:cavity filling velocity,gate size and sleeve filling velocity.Finally,two specific applications of HSC are introduced,and the future direction of HSC development is discussed.
文摘In order to quantify the understanding of crack formation in Horizontal Continuous Casting billet.the two-dimensional unsteady state mathematical model for heat transfer and elas-toplastic stress model have been established.Using these models to calculate the thermal stress which occurred both during surface reheating of 150× 150 mm billet which is just taken out of mold and during temperature drop in billet centre near the end of solidification,the reasonable crack formation criteria for about 0.45%carbon steel have been proposed as follows:In high temperature brittle zone higher than 1300℃,the critical tensile strength is about 170-390 N/cm^2,the critical strain to fracture is about 0.10%- 0.24%.
文摘An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.
基金This research was supported by the Major State Basic Research Project of China,Grant No.G1999064905the National Natural Science Foundation of China,No.59974009.
文摘The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.
基金This work is financially supported by Basic Scientific Project of Liaoning Provincial Department of Education(LJKMZ20220591)Science and Technology Plan Project of Changzhou,China(CQ20220057).
文摘The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.
基金the support from the International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)the Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)+1 种基金the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JH-ZDZH-0039)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011)。
文摘It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.
文摘The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.
基金Project(CSTC2007BB4216) supported by the Natural Science Foundation of Chongqing,China
文摘To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.
文摘A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface circuit for stroke measurements were given out.An effective method was provided,which made the process parameters progressively optimize under the software environment using friendly interface of person-and-computer communication.This method was also adaptable to optimize parameters of other production process which are hard to model.
基金supported by Introducing Talents of Discipline to Universities (No.B07015)the Ministry of Education New Teachers Fund Project (No.20090042120001)Central University Basic R&D Operating Expenses (No.N100409006)
文摘7075 aluminum alloy ingot with the diameter izontal direct chill casting in different casting of 100 mm has been produced by horspeed. The effect of the casting speed on the ingot surface and subsurface layer was studied by surface observation and subsurface structure analysis. It was found that increasing the casting speed results in the adding of segregation knots in the ingot surface. The thickness of the dendrite microstrueture layer in the subsurface reduces with increasing the casting speed. And the elements of Zn, Cu and Mg enrich in the coarse dendrite microstructure layer of the ingot.
基金Item Sponsored by National Natural Science Foundation of China[No.51074031]
文摘The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and microstructures of the bonding interface are observed.The results show that cladding hollow billets combine the external and internal layers by metallurgical bonding without mixing when the pouring temperature of the external liquid metal is 903 K.The diffusion region with the thickness of 25 μm can be seen clearly,where mutual diffusion of Si and Mn atoms takes place. In addition,the intermetallic compound Al_(12)(FeMn)_3Si_2 is formed in the interface.
基金the financial support from CAS/SAFEA International Partnership Program for Creative Research Teams
文摘A program on the solidification process of horizontal centrifugal casting coupled with eutectic carbides segregation has been developed in this paper. Due to the geometrical features of work roll, a cylindrical coordinate system was used. The temperature field of the outer layer at the end of filling process was imported as the initial temperature condition for the solidification process. The model of eutectic carbides segregation caused by different densities between eutectic MC and the molten steel was coupled in the program. The temperature field of the outer layer of work roll during horizontal centrifugal casting process was investigated. Results show that the outer layer has a "sandwich shape" solid fraction manner. Results also indicate that the segregation of eutectic MC is quite severe during centrifugal casting process. It forms four zones of different content of carbides in radial direction. The simulated results of MC carbides segregation phenomenon agree with the experimental observations.