The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at a...The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.展开更多
Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It...Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It is assumed that the pipe flow would transform into seepage flow when the aggregates are plugged into the water inrush channel and the seepage flow would disappear along with grouting process. The simulation results show that the flow velocity will increase with an increase in height of aggregates accumulation body during the aggregates filling process; the maximum seepage velocity occurs on the top of plugging zone; and the water flow decreases with increasing plugging height of water inrush channel. Finally, the field construction results show that the water inrush channel can be plugged effectively by the compacted body prepared with aggregate and cement slurry.展开更多
文摘The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 41072031, 40172119)the Natural Science Foundation of Hebei Province of China(No. D2012402008)
文摘Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It is assumed that the pipe flow would transform into seepage flow when the aggregates are plugged into the water inrush channel and the seepage flow would disappear along with grouting process. The simulation results show that the flow velocity will increase with an increase in height of aggregates accumulation body during the aggregates filling process; the maximum seepage velocity occurs on the top of plugging zone; and the water flow decreases with increasing plugging height of water inrush channel. Finally, the field construction results show that the water inrush channel can be plugged effectively by the compacted body prepared with aggregate and cement slurry.