This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit...This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit value between 0.95 and 0.05.The mass flow rate ranges from 4 to 40 kg/m^(2).s with a saturated temperature spanning an interval from 40°C to 80°C.A special approach has been implemented using the Engineering Equation Solver(EES)to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients.A wavy-stratified structure of the two-phase flow has been found when the mass rate was between 4 and 24 kg/m^(2).s.In contrast,an initially annular flow is gradually converted into a wavy stratified flow(due to the condensation process taking place inside the flattened tube)when the considered range ranges from 32 to 40 kg/m^(2).s.展开更多
Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and ...Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and variation in cooling water temperature on heat transfer coefficient are investigated as a parametric study. Condensation process of steam has been successfully modeled by applying a user defined function (UDF) added to the commercial computational fluid dynamics (CFD) package. By analyzing the corresponding condensate contours and the curves of local heat transfer coefficient, the relationships between condensation heat transfer coefficient and various parameters of R245fa inside horizontal tube are obtained. It shows that the heat transfer coefficient increases by the increase in velocity, condensation temperature and superheat of inlet steam and the decrease in cooling water temperature. The errors between the heat transfer coefficient of simulation result and model of Wang and Shah are within ±30%. The parametric study will provide the basis for designing efficient heat exchangers of R245fa.展开更多
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a...The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.展开更多
Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat tra...Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.展开更多
水平管内流动冷凝的两相流型对其传热与流动的研究十分重要,流型图则是流型辨别及其转换判断的重要工具。本文总结了目前水平管内流动冷凝流型图及其转换标准的研究进展,列举了七种针对流动冷凝提出的流型图:Breber et al.(1980),Tandon...水平管内流动冷凝的两相流型对其传热与流动的研究十分重要,流型图则是流型辨别及其转换判断的重要工具。本文总结了目前水平管内流动冷凝流型图及其转换标准的研究进展,列举了七种针对流动冷凝提出的流型图:Breber et al.(1980),Tandon et al.(1982),Cavallini et al.(2002,2006),El Hajal et al.(2003),Kim et al.(2012)和Nema et al.(2014),根据现有的研究,发现目前的两相流型图大多针对绝热条件及流动沸腾所提出,其应用于流动冷凝中存在一定的偏差,而流动冷凝两相流型图目前研究还较少。另外,现有的流型图大多针对常规管道和基于常温常压工质所提出,其应用于微管道和低温或高压等工质存在一定的困难,且其研究还未能与传热及压降模型的研究实现较好的联系。展开更多
文摘This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit value between 0.95 and 0.05.The mass flow rate ranges from 4 to 40 kg/m^(2).s with a saturated temperature spanning an interval from 40°C to 80°C.A special approach has been implemented using the Engineering Equation Solver(EES)to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients.A wavy-stratified structure of the two-phase flow has been found when the mass rate was between 4 and 24 kg/m^(2).s.In contrast,an initially annular flow is gradually converted into a wavy stratified flow(due to the condensation process taking place inside the flattened tube)when the considered range ranges from 32 to 40 kg/m^(2).s.
文摘Numerical simulation on R245fa condensation inside an inner diameter of 8 mm horizontal tube is researched in this paper. The effect of variation in velocity, condensation temperature and superheat of inlet steam and variation in cooling water temperature on heat transfer coefficient are investigated as a parametric study. Condensation process of steam has been successfully modeled by applying a user defined function (UDF) added to the commercial computational fluid dynamics (CFD) package. By analyzing the corresponding condensate contours and the curves of local heat transfer coefficient, the relationships between condensation heat transfer coefficient and various parameters of R245fa inside horizontal tube are obtained. It shows that the heat transfer coefficient increases by the increase in velocity, condensation temperature and superheat of inlet steam and the decrease in cooling water temperature. The errors between the heat transfer coefficient of simulation result and model of Wang and Shah are within ±30%. The parametric study will provide the basis for designing efficient heat exchangers of R245fa.
文摘The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.
基金supported by the National Natural Science Foundation of China (Grant No. 51078053)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT11ZD105)
文摘Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.
文摘水平管内流动冷凝的两相流型对其传热与流动的研究十分重要,流型图则是流型辨别及其转换判断的重要工具。本文总结了目前水平管内流动冷凝流型图及其转换标准的研究进展,列举了七种针对流动冷凝提出的流型图:Breber et al.(1980),Tandon et al.(1982),Cavallini et al.(2002,2006),El Hajal et al.(2003),Kim et al.(2012)和Nema et al.(2014),根据现有的研究,发现目前的两相流型图大多针对绝热条件及流动沸腾所提出,其应用于流动冷凝中存在一定的偏差,而流动冷凝两相流型图目前研究还较少。另外,现有的流型图大多针对常规管道和基于常温常压工质所提出,其应用于微管道和低温或高压等工质存在一定的困难,且其研究还未能与传热及压降模型的研究实现较好的联系。