The horizontal structure of mangrove forests is an important characteristic that reflects a significant signal for coupling between mangroves and external drivers.While the loss and gain of mangroves has received much...The horizontal structure of mangrove forests is an important characteristic that reflects a significant signal for coupling between mangroves and external drivers.While the loss and gain of mangroves has received much attention,little information about how the horizontal structure of mangrove forests develops from the seedling stage to maturity has been presented.Here,remote sensing images taken over approximately 15 years,UVA images,nutrient elements,sediments,and Aegiceras corniculatum vegetation parameters of the ecological quadrats along the Nanliu Delta,the largest delta of the northern Beibu Gulf in China,are analyzed to reveal changes in the horizontal structure of mangroves and their associated driving factors.The results show that both discrete structures and agglomerated structures can often be found in A.corniculatum seedlings and saplings.However,the combination of seedlings growing into maturity and new seedlings filling in available gaps causes the discrete structure of A.corniculatum to gradually vanish and the agglomerate structure to become stable.The aggregated structure of seedlings,compared to the discrete structure,can enhance the elevation beneath mangroves by trapping significantly more sediments,providing available spaces and conditions for seedlings to continue growing.Furthermore,by catching fine sediments with enriched nutrients,the survival rate of A.corniculatum seedlings in the agglomerated structure can be much higher than that in the discrete structure.Our results highlight the significance of the agglomeration of A.corniculatum,which can be beneficial to coastal mangrove restoration and management.展开更多
At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they...At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they cannot capture the whole picture of the horizontal structure of Es layers.This study employs the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension model(WACCM-X 2.1)to derive the horizontal structure of the ion convergence region(HSICR)to explore the shapes of the large-scale Es layers over East Asia for the period from June 1 to August 31,2008.The simulation produced the various shapes of the HSICRs elongated in the northwest-southeast,northeast-southwest,or composed of individual small patches.The close connection between Es layer critical frequency(foEs)and vertical ion convergence indicates that the HSICR is a good candidate for revealing and explaining the horizontal structure of the large-scale Es layers.展开更多
In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure...In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.展开更多
By reviewing the research on the effect of corporate merger, we find that knowledge is still limited to the effect of corporate merger on industrial structure. In this article, firstly we study the effect of horizonta...By reviewing the research on the effect of corporate merger, we find that knowledge is still limited to the effect of corporate merger on industrial structure. In this article, firstly we study the effect of horizontal merger on market structure, then explore the effect of market performance on industrial structure. Finally we present a new model that can explain how horizontal merger improves the adjustment of industrial structure.展开更多
Agroforests are man-made ecosystems in which crops are associated with a main perennial species like Robusta Coffee Agroforests (RCAs), which is counted among the main modes of perennial crops production in Cameroon. ...Agroforests are man-made ecosystems in which crops are associated with a main perennial species like Robusta Coffee Agroforests (RCAs), which is counted among the main modes of perennial crops production in Cameroon. Despite the rich ecosystem services provided, the diversity of Associated Species (AS) found in these RCAs and the structure of the landscapes they form remain little known in Cameroon. The current study aimed to inventory AS and characterize the structure of RCAs in four sites (Ayos, Malantouen, Melong and Nkongsamba) belonging to three robusta coffee production basins in Cameroon. A systematic inventory with dendrometric measurements of the wood AS and coffee trees was carried out on 120 one-hectare plot unit, i.e. 30 plots per site. The results showed that 102 AS belonging to 83 genera and 41 families were identified in these RCAs. The RCAs of Ayos in the dense rainforest zone with bimodal rainfall pattern were the most diverse with 71 species, followed by those of Melong and Nkongsamba with respectively 39 and 33 species respectively in the dense rainforest zone with monomodal rainfall pattern, and Malantouen with 33 species in the high savannahs of the west. Structurally, average coffee tree and AS densities founded ranged from 1208 - 1456 plants/ha and 71 - 214 stems/ha and those of basal area from 7.29 - 17.40 m<sup>2</sup>/ha for coffee trees and 7.97 - 16.14 m<sup>2</sup>/ha for AS in function of site. Basis on the vertical stratification, the proportion of the 3 - 6 m stratum, which is mainly represented by introduced AS, varied from 38% - 62% depending on the site. The results of this study showed that RCAs contribute to the conservation of plant biodiversity, given the specific richness identified in these ecosystems.展开更多
In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actu...In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.展开更多
Frame-masonry horizontal hybrid structure is a new type of self-built residence in the rural areas of Fujian Province in recent years. A shaking table test for 1/2 scale model is carried out on the basis of one repres...Frame-masonry horizontal hybrid structure is a new type of self-built residence in the rural areas of Fujian Province in recent years. A shaking table test for 1/2 scale model is carried out on the basis of one representative rural structure, and the dynamic characteristics and seismic responses of this experimental model are measured. As a supplement, the finite element model of the prototype structure is built by ANSYS software,and simulation and test results are contrasted and analyzed. The results show that according to this structure,the beam-column joint of the frame part has stress concentration and the destruction pattern of the masonry part is similar to brick-masonry structure. There are obvious differences in lateral stiffness of each floor and direction,and the mass center does not coincide with the stiffness center, which can lead to excessive torsion and story drift of this structure under earthquakes of a certain intensity. Because of poor construction quality, unfavorable structural measures and irrational structural system in present rural areas, there is a potential safety threat with this type of structures in highly seismic region. Some suggestions for strengthening and retrofitting frame-masonry horizontal hybrid structures are pointed out.展开更多
It is difficult to predict earthquakes by earthresistivity measurement with single-poleseparation. Taking a shallow seated horizontally stratification model, we developed a new measurement system with multipoleseparat...It is difficult to predict earthquakes by earthresistivity measurement with single-poleseparation. Taking a shallow seated horizontally stratification model, we developed a new measurement system with multipoleseparations and its corresponding inversion technique of the earth-resistivity to improve the prediction efficiency. Long-term experiments and investigations at several stations show that the new method based on resisti-vity variations at the bottom of shollow seated stratified medium is obviously superior to that directly based on the earth-resistivity itself.展开更多
Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D)...Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D) coupledmode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Pade approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.展开更多
Forest structural complexity can mediate the light and water distribution within forest canopies,and has a direct impact on forest biodiversity and carbon storage capability.It is believed that increases in forest str...Forest structural complexity can mediate the light and water distribution within forest canopies,and has a direct impact on forest biodiversity and carbon storage capability.It is believed that increases in forest structural complexity can enhance tree species diversity and forest productivity,but inconsistent relationships among them have been reported.Here,we quantified forest structural complexity in three aspects(i.e.,horizontal,vertical,and internal structural complexity)from unmanned aerial vehicle light detection and ranging data,and investigated their correlations with tree species diversity and forest productivity by incorporating field measurements in three forest biomes with large latitude gradients in China.Our results show that internal structural complexity had a stronger correlation(correlation coefficient=0.85)with tree species richness than horizontal structural complexity(correlation coefficient=-0.16)and vertical structural complexity(correlation coefficient=0.61),and it was the only forest structural complexity attribute having significant correlations with both tree species richness and tree species evenness.A strong scale effect was observed in the correlations among forest structural complexity,tree species diversity,and forest productivity.Moreover,forest internal structural complexity had a tight positive coordinated contribution with tree species diversity to forest productivity through structure equation model analysis,while horizontal and vertical structural complexity attributes have insignificant or weaker coordinated effects than internal structural complexity,which indicated that the neglect of forest internal structural complexity might partially lead to the current inconsistent observations among forest structural complexity,tree species diversity,and forest productivity.The results of this study can provide a new angle to understand the observed inconsistent correlations among forest structural complexity,tree species diversity,and forest productivity.展开更多
基金The National Natural Science Key Foundation of China under contract No.41930537the Key Research Base of Humanities and Social Sciences in Guangxi Universities“Beibu Gulf Ocean Development Research Center”under contract No.10BHZKY2110+1 种基金the Key Research and Development Plan of Guangxi under contract No.Guike AB21076016the Marine Science Program for Guangxi First-Class Discipline,Beibu Gulf University.
文摘The horizontal structure of mangrove forests is an important characteristic that reflects a significant signal for coupling between mangroves and external drivers.While the loss and gain of mangroves has received much attention,little information about how the horizontal structure of mangrove forests develops from the seedling stage to maturity has been presented.Here,remote sensing images taken over approximately 15 years,UVA images,nutrient elements,sediments,and Aegiceras corniculatum vegetation parameters of the ecological quadrats along the Nanliu Delta,the largest delta of the northern Beibu Gulf in China,are analyzed to reveal changes in the horizontal structure of mangroves and their associated driving factors.The results show that both discrete structures and agglomerated structures can often be found in A.corniculatum seedlings and saplings.However,the combination of seedlings growing into maturity and new seedlings filling in available gaps causes the discrete structure of A.corniculatum to gradually vanish and the agglomerate structure to become stable.The aggregated structure of seedlings,compared to the discrete structure,can enhance the elevation beneath mangroves by trapping significantly more sediments,providing available spaces and conditions for seedlings to continue growing.Furthermore,by catching fine sediments with enriched nutrients,the survival rate of A.corniculatum seedlings in the agglomerated structure can be much higher than that in the discrete structure.Our results highlight the significance of the agglomeration of A.corniculatum,which can be beneficial to coastal mangrove restoration and management.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA17010207)scholarship received from the China Scholarship Council (CSC) under grant CSC No.202006410017supported by the Fundamental Research Funds for National University,China University of Geosciences (Wuhan)
文摘At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they cannot capture the whole picture of the horizontal structure of Es layers.This study employs the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension model(WACCM-X 2.1)to derive the horizontal structure of the ion convergence region(HSICR)to explore the shapes of the large-scale Es layers over East Asia for the period from June 1 to August 31,2008.The simulation produced the various shapes of the HSICRs elongated in the northwest-southeast,northeast-southwest,or composed of individual small patches.The close connection between Es layer critical frequency(foEs)and vertical ion convergence indicates that the HSICR is a good candidate for revealing and explaining the horizontal structure of the large-scale Es layers.
文摘In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.
文摘By reviewing the research on the effect of corporate merger, we find that knowledge is still limited to the effect of corporate merger on industrial structure. In this article, firstly we study the effect of horizontal merger on market structure, then explore the effect of market performance on industrial structure. Finally we present a new model that can explain how horizontal merger improves the adjustment of industrial structure.
文摘Agroforests are man-made ecosystems in which crops are associated with a main perennial species like Robusta Coffee Agroforests (RCAs), which is counted among the main modes of perennial crops production in Cameroon. Despite the rich ecosystem services provided, the diversity of Associated Species (AS) found in these RCAs and the structure of the landscapes they form remain little known in Cameroon. The current study aimed to inventory AS and characterize the structure of RCAs in four sites (Ayos, Malantouen, Melong and Nkongsamba) belonging to three robusta coffee production basins in Cameroon. A systematic inventory with dendrometric measurements of the wood AS and coffee trees was carried out on 120 one-hectare plot unit, i.e. 30 plots per site. The results showed that 102 AS belonging to 83 genera and 41 families were identified in these RCAs. The RCAs of Ayos in the dense rainforest zone with bimodal rainfall pattern were the most diverse with 71 species, followed by those of Melong and Nkongsamba with respectively 39 and 33 species respectively in the dense rainforest zone with monomodal rainfall pattern, and Malantouen with 33 species in the high savannahs of the west. Structurally, average coffee tree and AS densities founded ranged from 1208 - 1456 plants/ha and 71 - 214 stems/ha and those of basal area from 7.29 - 17.40 m<sup>2</sup>/ha for coffee trees and 7.97 - 16.14 m<sup>2</sup>/ha for AS in function of site. Basis on the vertical stratification, the proportion of the 3 - 6 m stratum, which is mainly represented by introduced AS, varied from 38% - 62% depending on the site. The results of this study showed that RCAs contribute to the conservation of plant biodiversity, given the specific richness identified in these ecosystems.
基金Funded by the National Natural Science Foundation of China(Nos.11172053 and 91016024)the New Century Excellent Talents in University(NCET-11-0055)the Fundamental Research Funds for the Central Universities(DUT13ZD(G)06)
文摘In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.
基金the National Natural Science Foundation of China(No.51578160)
文摘Frame-masonry horizontal hybrid structure is a new type of self-built residence in the rural areas of Fujian Province in recent years. A shaking table test for 1/2 scale model is carried out on the basis of one representative rural structure, and the dynamic characteristics and seismic responses of this experimental model are measured. As a supplement, the finite element model of the prototype structure is built by ANSYS software,and simulation and test results are contrasted and analyzed. The results show that according to this structure,the beam-column joint of the frame part has stress concentration and the destruction pattern of the masonry part is similar to brick-masonry structure. There are obvious differences in lateral stiffness of each floor and direction,and the mass center does not coincide with the stiffness center, which can lead to excessive torsion and story drift of this structure under earthquakes of a certain intensity. Because of poor construction quality, unfavorable structural measures and irrational structural system in present rural areas, there is a potential safety threat with this type of structures in highly seismic region. Some suggestions for strengthening and retrofitting frame-masonry horizontal hybrid structures are pointed out.
文摘It is difficult to predict earthquakes by earthresistivity measurement with single-poleseparation. Taking a shallow seated horizontally stratification model, we developed a new measurement system with multipoleseparations and its corresponding inversion technique of the earth-resistivity to improve the prediction efficiency. Long-term experiments and investigations at several stations show that the new method based on resisti-vity variations at the bottom of shollow seated stratified medium is obviously superior to that directly based on the earth-resistivity itself.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804360)the IACAS Frontier Exploration Project(Grant No.QYTS202103)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08)。
文摘Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D) coupledmode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Pade approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.
基金supported by the Frontier Science Key Programs of the Chinese Academy of Sciences(QYZDY-SSW-SMC011)the National Natural Science Foundation of China(41871332,31971575,41901358).
文摘Forest structural complexity can mediate the light and water distribution within forest canopies,and has a direct impact on forest biodiversity and carbon storage capability.It is believed that increases in forest structural complexity can enhance tree species diversity and forest productivity,but inconsistent relationships among them have been reported.Here,we quantified forest structural complexity in three aspects(i.e.,horizontal,vertical,and internal structural complexity)from unmanned aerial vehicle light detection and ranging data,and investigated their correlations with tree species diversity and forest productivity by incorporating field measurements in three forest biomes with large latitude gradients in China.Our results show that internal structural complexity had a stronger correlation(correlation coefficient=0.85)with tree species richness than horizontal structural complexity(correlation coefficient=-0.16)and vertical structural complexity(correlation coefficient=0.61),and it was the only forest structural complexity attribute having significant correlations with both tree species richness and tree species evenness.A strong scale effect was observed in the correlations among forest structural complexity,tree species diversity,and forest productivity.Moreover,forest internal structural complexity had a tight positive coordinated contribution with tree species diversity to forest productivity through structure equation model analysis,while horizontal and vertical structural complexity attributes have insignificant or weaker coordinated effects than internal structural complexity,which indicated that the neglect of forest internal structural complexity might partially lead to the current inconsistent observations among forest structural complexity,tree species diversity,and forest productivity.The results of this study can provide a new angle to understand the observed inconsistent correlations among forest structural complexity,tree species diversity,and forest productivity.