As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequen...As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.展开更多
Through a lot of experiments, a new kind of stove using horizontal combustion tech-nique for bituminous coal briquet has been developed. Making use of this stove, studies have been made on burning process of bituminou...Through a lot of experiments, a new kind of stove using horizontal combustion tech-nique for bituminous coal briquet has been developed. Making use of this stove, studies have been made on burning process of bituminous coal briquet, distribution of temperature field in the stove, the regularities of evolution and combustion of volatile matter, the burning rate and edi-ciency of bituminous coal briquet, characteristics of fire-sealing and sulfur-retention. The results show that, with the technique, some achievements can be obtained in combustion of bituminous coal briquet, such as lower pollution that the flue gas black degree is below 0. 5R and dust con-centration is below 90 mg/m3. The stove’s combustion efficiency reaches 90%, sulfur fixing effi-ciency is 60%, and oO concentration is decreased by 40% compared with other traditional stoves. With so many advantages, the stove can be used extensively in civil stoves and smaller industrial boilers.展开更多
By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exist...By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exists a system of local coordinate which is normalized at a point v ∈M = T1.0M/o(M), and then the horizontal Laplace operator NH for differential forms on PTM is defined by the horizontal part of the Chern-Finsler connection and its curvature tensor, and the horizontal Laplace operator H on holomorphic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic line bundle over PTM is also obtained展开更多
This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be convenie...This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.展开更多
Face authentication is an important biometric authentication method commonly used in security applications.It is vulnerable to different types of attacks that use authorized users’facial images and videos captured fr...Face authentication is an important biometric authentication method commonly used in security applications.It is vulnerable to different types of attacks that use authorized users’facial images and videos captured from social media to perform spoofing attacks and dynamic movements for penetrating secur-ity applications.This paper presents an innovative challenge-response emotions authentication model based on the horizontal ensemble technique.The proposed model provides high accurate face authentication process by challenging the authorized user using a random sequence of emotions to provide a specific response for every authentication trial with a different sequence of emotions.The proposed model is applied to the KDEF dataset using 10-fold cross-valida-tions.Several improvements are made to the proposed model.First,the VGG16 model is applied to the seven common emotions.Second,the system usability is enhanced by analyzing and selecting only the four common and easy-to-use emotions.Third,the horizontal ensemble technique is applied to enhance the emotion recognition accuracy and minimize the error during authen-tication processes.Finally,the Horizontal Ensemble Best N-Losses(HEBNL)is applied using challenge-response emotion to improve the authentication effi-ciency and minimize the computational power.The successive improvements implemented on the proposed model led to an improvement in the accuracy from 92.1%to 99.27%.展开更多
In the recent literature concerning the multi-propped bottom-up technique Shanghai Metro Stations Excavations, there is evidence of the importance of the disturbance in terms of greater wall horizontal deflections and...In the recent literature concerning the multi-propped bottom-up technique Shanghai Metro Stations Excavations, there is evidence of the importance of the disturbance in terms of greater wall horizontal deflections and consequently vertical settlements in the neighbouring, caused by the late long time of open -cut excavation without propping. Here is proposed, theoretical and pragmatic at the same time, a new approach to face the problem of the wall deflections and the related vertical settlements behind the wall. The solution proposed is indeed to impede any formation of the incipient sliding in the active wedge soil rupture surface, by oblique piling crossing over the rupture surface through a longer pile penetration length in relation to the active wedge before any excavation process starts. This piled-construction will then cut to shape the excavation profiles recurring to loss of piles material. This solution is particularly fit for high seismicity prone areas, because of the minor relative loss of per unit length of pile, caused by the greater depth of the rupture surfaces to get and cross over.展开更多
文摘As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.
文摘Through a lot of experiments, a new kind of stove using horizontal combustion tech-nique for bituminous coal briquet has been developed. Making use of this stove, studies have been made on burning process of bituminous coal briquet, distribution of temperature field in the stove, the regularities of evolution and combustion of volatile matter, the burning rate and edi-ciency of bituminous coal briquet, characteristics of fire-sealing and sulfur-retention. The results show that, with the technique, some achievements can be obtained in combustion of bituminous coal briquet, such as lower pollution that the flue gas black degree is below 0. 5R and dust con-centration is below 90 mg/m3. The stove’s combustion efficiency reaches 90%, sulfur fixing effi-ciency is 60%, and oO concentration is decreased by 40% compared with other traditional stoves. With so many advantages, the stove can be used extensively in civil stoves and smaller industrial boilers.
基金Supported by the National Natural Science Foundation of China (10571144,10771174)Program for New Centery Excellent Talents in Xiamen University
文摘By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exists a system of local coordinate which is normalized at a point v ∈M = T1.0M/o(M), and then the horizontal Laplace operator NH for differential forms on PTM is defined by the horizontal part of the Chern-Finsler connection and its curvature tensor, and the horizontal Laplace operator H on holomorphic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic line bundle over PTM is also obtained
基金supported by the State Scholarship Fund(2011611091)supported by China Shipbuilding Industry Corporation
文摘This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.
基金This work is partially supported by the Deanship of Scientific Research at Jouf University under Grant No(DSR-2021–02–0369).
文摘Face authentication is an important biometric authentication method commonly used in security applications.It is vulnerable to different types of attacks that use authorized users’facial images and videos captured from social media to perform spoofing attacks and dynamic movements for penetrating secur-ity applications.This paper presents an innovative challenge-response emotions authentication model based on the horizontal ensemble technique.The proposed model provides high accurate face authentication process by challenging the authorized user using a random sequence of emotions to provide a specific response for every authentication trial with a different sequence of emotions.The proposed model is applied to the KDEF dataset using 10-fold cross-valida-tions.Several improvements are made to the proposed model.First,the VGG16 model is applied to the seven common emotions.Second,the system usability is enhanced by analyzing and selecting only the four common and easy-to-use emotions.Third,the horizontal ensemble technique is applied to enhance the emotion recognition accuracy and minimize the error during authen-tication processes.Finally,the Horizontal Ensemble Best N-Losses(HEBNL)is applied using challenge-response emotion to improve the authentication effi-ciency and minimize the computational power.The successive improvements implemented on the proposed model led to an improvement in the accuracy from 92.1%to 99.27%.
文摘In the recent literature concerning the multi-propped bottom-up technique Shanghai Metro Stations Excavations, there is evidence of the importance of the disturbance in terms of greater wall horizontal deflections and consequently vertical settlements in the neighbouring, caused by the late long time of open -cut excavation without propping. Here is proposed, theoretical and pragmatic at the same time, a new approach to face the problem of the wall deflections and the related vertical settlements behind the wall. The solution proposed is indeed to impede any formation of the incipient sliding in the active wedge soil rupture surface, by oblique piling crossing over the rupture surface through a longer pile penetration length in relation to the active wedge before any excavation process starts. This piled-construction will then cut to shape the excavation profiles recurring to loss of piles material. This solution is particularly fit for high seismicity prone areas, because of the minor relative loss of per unit length of pile, caused by the greater depth of the rupture surfaces to get and cross over.