The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodyn...The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.展开更多
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat...Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.展开更多
Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach b...Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach based on Finite-difference Method was developed for analyzing the dynamic response of the piles-bridge structure. For a single pile, good agreement between two computed results validated the present approach.The slenderness ratio of the pile, the pile-soil stiffness ratio and the type of the structure influence the dynamic response of the piles-bridge structure. The computed results showed that the stiffness of the structure determines the dynamic response of the piles-bridge structure under horizontal forcing.展开更多
The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical si...The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.展开更多
The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizont...The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizontal bending. A calculation formula for natural frequency of horizontal resonance and rotational speed is derived based on the calculation method by Ritz, with which analysis is made for the cause and affecting factors of the excessive abrasion of heavy-weight drill pipe in high-angle holes so as to provide reference and basis for rational selection of drilling parameters and drilling tools in the future high-angle directional drilling.展开更多
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51708064the National Key Research and Development Program of China under Grant No.2016YFE0200100
文摘The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.
文摘Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
文摘Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach based on Finite-difference Method was developed for analyzing the dynamic response of the piles-bridge structure. For a single pile, good agreement between two computed results validated the present approach.The slenderness ratio of the pile, the pile-soil stiffness ratio and the type of the structure influence the dynamic response of the piles-bridge structure. The computed results showed that the stiffness of the structure determines the dynamic response of the piles-bridge structure under horizontal forcing.
文摘The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.
文摘The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizontal bending. A calculation formula for natural frequency of horizontal resonance and rotational speed is derived based on the calculation method by Ritz, with which analysis is made for the cause and affecting factors of the excessive abrasion of heavy-weight drill pipe in high-angle holes so as to provide reference and basis for rational selection of drilling parameters and drilling tools in the future high-angle directional drilling.
文摘以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法.通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素.结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%.与现有方法相比,所提方法的计算结果更接近实测值.入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关.当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.