The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup...The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.展开更多
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch...Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.展开更多
Objective The Guangshigou uranium deposit is located in the eastern part of the Shangdan triangular domain, which is currently the most productive pegmatite-hosted uranium deposit in China. Previous studies have focus...Objective The Guangshigou uranium deposit is located in the eastern part of the Shangdan triangular domain, which is currently the most productive pegmatite-hosted uranium deposit in China. Previous studies have focused on the migration and precipitation of uraninite and biotite clusters in the uraniferous pegmatites(Li Yanhe et al., 2016; Yuan et al., 2018). However, the accurate uranium mineralization age still remains poorly constrained, thus展开更多
The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constrai...The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constraint has good controllability,and the constructed parallel mechanism has more configurations and wider application range.This paper presents a reconfigurable axis(rA)joint inspired and evolved from Rubik’s Cubes,which have a unique feature of geometric and physical constraint of axes of joint.The effectiveness of the rA joint in the construction of the limb is analyzed,resulting in a change in mobility and topology of the parallel mechanism.The rA joint makes the angle among the three axes inside the groove changed arbitrarily.This change in mobility is completed by the case illustrated by a 3(rA)P(rA)reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations,pure rotations.The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors,leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint.The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases.The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.展开更多
The pre-research on mobility analysis presented a unified-mobility formula and a methodology based on reciprocal screw theory by HUANG, which focused on classical and modem parallel mechanisms. However its range of ap...The pre-research on mobility analysis presented a unified-mobility formula and a methodology based on reciprocal screw theory by HUANG, which focused on classical and modem parallel mechanisms. However its range of application needs to further extend to general multi-loop spatial mechanism. This kind of mechanism is not only more complex in structure but also with strong motion coupling among loops, making the mobility analysis even more complicated, and the relevant research has long been ignored. It is focused on how to apply the new principle for general spatial mechanism to those various multi-loop spatial mechanisms, and some new meaningful knowledge is further found. Several typical examples of the genera/multi-loop spatial mechanisms with motion couple even strong motion couple are considered. These spatial mechanisms include different closing way: over-constraint appearing in rigid closure, in movable closure, and in dynamic closure as well; these examples also include two different new methods to solve this kind of issue: the way to recognize over-constraints by analyzing relative movement between two connected links and by constructing a virtual loop to recognize over-constraints. In addition, over-constraint determination tabulation is brought to analyze the motion couple. The researches above are all based upon the screw theory. All these multi-loop spatial mechanisms with different kinds of structures can completely be solved by following the directions and examples, and the new mobility theory based on the screw theory is also proved to be valid. This study not only enriches and develops the theory and makes the theory more universal, but also has a special meaning for innovation in mechanical engineering.展开更多
In Senegal, particularly in the Senegal River valley, agricultural mechanization remains limited, mainly due to a lack of agricultural equipment, a lack of expertise in agricultural machinery and an apprehension of th...In Senegal, particularly in the Senegal River valley, agricultural mechanization remains limited, mainly due to a lack of agricultural equipment, a lack of expertise in agricultural machinery and an apprehension of the consequences on soil quality. To better understand agricultural mechanization of rice cultivation, this survey study has been carried out in the Senegal river valley. Precisely, this work aimed to characterize farm machinery and its effects on soil and rice cultivation. A questionnaire was administered to 304 out of 1270 farmers, spread over 8 rice-growing areas, 4 of which are located in the Podor department, three in Dagana and one in Saint-Louis. The results showed that 99.3% of farmers used motorized equipment, with 95.7% using tractor and 3.6% a power tiller. Offset tillage, which is a shallow cultivation practice carried out to break up hard soil without turning it over, was most widespread among growers (95.4%). 78.3% of the valley’s farmers felt that the machinery used to carry out tillage operations was inefficient. According to the farmers, the main constraints on the use of agricultural machinery in the valley were: the upkeep and maintenance of equipment (57%), the lack of expertise in mechanization (31%), and issues adapting machinery to local conditions (12%). Those constraints have contributed to a drop in yields in recent years, the spread of weeds on cultivated plots and the gradual degradation of the soil in the area according to 78% of farmers.展开更多
To research the operating mechanisms of rural financial reform, through setting up a contract model, the constraint roles of reputation and legal intervention on the default risk arising in the operating of the credit...To research the operating mechanisms of rural financial reform, through setting up a contract model, the constraint roles of reputation and legal intervention on the default risk arising in the operating of the credit union funds are inspected. Analysis indicates that the increase in reputation cost can reduce the probability of union member default behavior and the probability of turning to the law for the credit union funds. Meanwhile, the amount of loans and the interest rates can increase the probability of turning to the law for the credit union funds. Below the marginal values, the penalty mechanisms can reduce the balancing probabilities of member default behavior and turning to the law for the credit union funds, namely, the penalty has some "substitution effect" for turning to the law for the credit union funds.展开更多
It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel ...It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.展开更多
A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism a...A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.展开更多
By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod un...By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod unilateral holonomic constraints respectively in time-independent circumstances is presented.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have n...Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.展开更多
The description of modern differential geometry for time-dependent Chetaev nonholonomic mechanical systems with unilateral constraints is studied. By using the structure of exact contact manifold, the geometric framew...The description of modern differential geometry for time-dependent Chetaev nonholonomic mechanical systems with unilateral constraints is studied. By using the structure of exact contact manifold, the geometric framework of time- dependent nonholonomic mechanical systems subject to unilateral nonholonomic constraints and unilateral holonomic constraints respectively is presented.展开更多
In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of th...In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.展开更多
This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems...This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this re-lation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.展开更多
Based on the principal-agent theory, this paper analyzes the current situation and the developing trends of Chinese private enterprises. It points out the obstacles confronted by Chinese private enterprise in setting ...Based on the principal-agent theory, this paper analyzes the current situation and the developing trends of Chinese private enterprises. It points out the obstacles confronted by Chinese private enterprise in setting up the principal-agent mechanism and proposes the corresponding solutions to these problems.展开更多
Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples t...Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.展开更多
The looper drive mechanism is a main moving part in the blind stitching machine, which is aspatial 5 bar RRRSR linkage. In this paper, a dynamic analysis of the looper drive mechanism is made by means of the ma-trix m...The looper drive mechanism is a main moving part in the blind stitching machine, which is aspatial 5 bar RRRSR linkage. In this paper, a dynamic analysis of the looper drive mechanism is made by means of the ma-trix method. Two methods are adopted in the calculation of the shaking force and shaking moment, one isdone by the constraint reaction of the flame-connected kinematic parts; the other is the inertialforces of all moving links.展开更多
Two massive blocks are connected with a massless unstretchable line of 2l. One of the masses is placed on a horizontal frictionless table, l distance away from the edge of the table the other one is held horizontally ...Two massive blocks are connected with a massless unstretchable line of 2l. One of the masses is placed on a horizontal frictionless table, l distance away from the edge of the table the other one is held horizontally equidistance from the edge along the extension of the line. The latter is released from rest. As it falls under gravity’s pull, it drags the one on the table. It is the interest of this investigation to analyze the kinematics of the system. Because of the holonomic constraint of the system, analysis of the problem encounters complicated super nonlinear coupled differential equations. Utilizing Mathematica we solve the equations numerically. Applying the solutions we quantify numerous kinematic quantities;most interestingly we evaluate the run-time, and the trajectory of the falling block. Analysis is robust allowing us to address the “what if” scenarios.展开更多
In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the sys...In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.展开更多
基金supported by the National Science Fund for Excellent Youth Scholars of China(52222708)the National Natural Science Foundation of China(51977007)。
文摘The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.
基金funded by the Cora Topolewski Cardiac Research Fund at the Children’s Hospital of Philadelphia(CHOP)the Pediatric Valve Center Frontier Program at CHOP+4 种基金the Additional Ventures Single Ventricle Research Fund Expansion Awardthe National Institutes of Health(USA)supported by the program(Nos.NHLBI T32 HL007915 and NIH R01 HL153166)supported by the program(No.NIH R01 HL153166)supported by the U.S.Department of Energy(No.DE-SC0022953)。
文摘Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.
基金provided by the Bureau of Geology of the Chinese National Nuclear Corporation (grants No. 2016YFE0206300, (2018)294, 3210402 and LTC1605-1)
文摘Objective The Guangshigou uranium deposit is located in the eastern part of the Shangdan triangular domain, which is currently the most productive pegmatite-hosted uranium deposit in China. Previous studies have focused on the migration and precipitation of uraninite and biotite clusters in the uraniferous pegmatites(Li Yanhe et al., 2016; Yuan et al., 2018). However, the accurate uranium mineralization age still remains poorly constrained, thus
基金Supported by National Natural Science Foundation of China(Grant No.51775052)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2019JM-181)Beijing Municipal Key Laboratory of Spaceground Interconnection and Convergence of China.
文摘The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constraint has good controllability,and the constructed parallel mechanism has more configurations and wider application range.This paper presents a reconfigurable axis(rA)joint inspired and evolved from Rubik’s Cubes,which have a unique feature of geometric and physical constraint of axes of joint.The effectiveness of the rA joint in the construction of the limb is analyzed,resulting in a change in mobility and topology of the parallel mechanism.The rA joint makes the angle among the three axes inside the groove changed arbitrarily.This change in mobility is completed by the case illustrated by a 3(rA)P(rA)reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations,pure rotations.The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors,leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint.The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases.The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.
基金Supported by National Natural Science Foundation of China(Grant No.51005195)Natural Science Research Fund for Youth in Higher Education Institutions of Hebei Province,China(Grant No.QN2014175)
文摘The pre-research on mobility analysis presented a unified-mobility formula and a methodology based on reciprocal screw theory by HUANG, which focused on classical and modem parallel mechanisms. However its range of application needs to further extend to general multi-loop spatial mechanism. This kind of mechanism is not only more complex in structure but also with strong motion coupling among loops, making the mobility analysis even more complicated, and the relevant research has long been ignored. It is focused on how to apply the new principle for general spatial mechanism to those various multi-loop spatial mechanisms, and some new meaningful knowledge is further found. Several typical examples of the genera/multi-loop spatial mechanisms with motion couple even strong motion couple are considered. These spatial mechanisms include different closing way: over-constraint appearing in rigid closure, in movable closure, and in dynamic closure as well; these examples also include two different new methods to solve this kind of issue: the way to recognize over-constraints by analyzing relative movement between two connected links and by constructing a virtual loop to recognize over-constraints. In addition, over-constraint determination tabulation is brought to analyze the motion couple. The researches above are all based upon the screw theory. All these multi-loop spatial mechanisms with different kinds of structures can completely be solved by following the directions and examples, and the new mobility theory based on the screw theory is also proved to be valid. This study not only enriches and develops the theory and makes the theory more universal, but also has a special meaning for innovation in mechanical engineering.
文摘In Senegal, particularly in the Senegal River valley, agricultural mechanization remains limited, mainly due to a lack of agricultural equipment, a lack of expertise in agricultural machinery and an apprehension of the consequences on soil quality. To better understand agricultural mechanization of rice cultivation, this survey study has been carried out in the Senegal river valley. Precisely, this work aimed to characterize farm machinery and its effects on soil and rice cultivation. A questionnaire was administered to 304 out of 1270 farmers, spread over 8 rice-growing areas, 4 of which are located in the Podor department, three in Dagana and one in Saint-Louis. The results showed that 99.3% of farmers used motorized equipment, with 95.7% using tractor and 3.6% a power tiller. Offset tillage, which is a shallow cultivation practice carried out to break up hard soil without turning it over, was most widespread among growers (95.4%). 78.3% of the valley’s farmers felt that the machinery used to carry out tillage operations was inefficient. According to the farmers, the main constraints on the use of agricultural machinery in the valley were: the upkeep and maintenance of equipment (57%), the lack of expertise in mechanization (31%), and issues adapting machinery to local conditions (12%). Those constraints have contributed to a drop in yields in recent years, the spread of weeds on cultivated plots and the gradual degradation of the soil in the area according to 78% of farmers.
基金The Philosophy and Social Sciences Program of Guangdong during the 11th Five-Year Plan Period for 2007(No.07D02)the Major Tender of Guangdong for 2007(No.KT005)
文摘To research the operating mechanisms of rural financial reform, through setting up a contract model, the constraint roles of reputation and legal intervention on the default risk arising in the operating of the credit union funds are inspected. Analysis indicates that the increase in reputation cost can reduce the probability of union member default behavior and the probability of turning to the law for the credit union funds. Meanwhile, the amount of loans and the interest rates can increase the probability of turning to the law for the credit union funds. Below the marginal values, the penalty mechanisms can reduce the balancing probabilities of member default behavior and turning to the law for the credit union funds, namely, the penalty has some "substitution effect" for turning to the law for the credit union funds.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.
基金supported by National Natural Science Foundation of China (Grant No. 51075039, Grant No. 50805110,Grant No. 50705010)Beijing Municipal Natural Science Foundation of China (Grant No. 3082014)the Fundamental Research Funds for the Central Universities of China (Grant No. 2009CZ08, Grant No. JY10000904010)
文摘A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.
基金the National Natural Science Foundation of China(No.19972010)the Qing Lan Project Foundation of Jiangsu Province of Chinathe Research Foundation of Suzhou Institute of Urban Construction & Environmental Protection of China
文摘By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod unilateral holonomic constraints respectively in time-independent circumstances is presented.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金supported by National Natural Science Foundation of China(Grant No. 51275047)
文摘Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021), the Natural Science Foundation of High Education of Jiangsu Province, China (Grant No 04KJA130135) and the "Qing Lan" Project Foundation of Jiangsu Province, China.
文摘The description of modern differential geometry for time-dependent Chetaev nonholonomic mechanical systems with unilateral constraints is studied. By using the structure of exact contact manifold, the geometric framework of time- dependent nonholonomic mechanical systems subject to unilateral nonholonomic constraints and unilateral holonomic constraints respectively is presented.
文摘In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.
基金Project supported by the National Natural Science Foundation of China(Nos.11072218 and 11272287)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT13097)
文摘This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this re-lation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.
文摘Based on the principal-agent theory, this paper analyzes the current situation and the developing trends of Chinese private enterprises. It points out the obstacles confronted by Chinese private enterprise in setting up the principal-agent mechanism and proposes the corresponding solutions to these problems.
文摘Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.
文摘The looper drive mechanism is a main moving part in the blind stitching machine, which is aspatial 5 bar RRRSR linkage. In this paper, a dynamic analysis of the looper drive mechanism is made by means of the ma-trix method. Two methods are adopted in the calculation of the shaking force and shaking moment, one isdone by the constraint reaction of the flame-connected kinematic parts; the other is the inertialforces of all moving links.
文摘Two massive blocks are connected with a massless unstretchable line of 2l. One of the masses is placed on a horizontal frictionless table, l distance away from the edge of the table the other one is held horizontally equidistance from the edge along the extension of the line. The latter is released from rest. As it falls under gravity’s pull, it drags the one on the table. It is the interest of this investigation to analyze the kinematics of the system. Because of the holonomic constraint of the system, analysis of the problem encounters complicated super nonlinear coupled differential equations. Utilizing Mathematica we solve the equations numerically. Applying the solutions we quantify numerous kinematic quantities;most interestingly we evaluate the run-time, and the trajectory of the falling block. Analysis is robust allowing us to address the “what if” scenarios.
文摘In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.