To explore the inherent characteristics of combustion-induced heat transfer in a flat flame furnace,a sophisticated hybrid method is introduced by combining a computer-based tomography(CT)-algebraic iterative algorith...To explore the inherent characteristics of combustion-induced heat transfer in a flat flame furnace,a sophisticated hybrid method is introduced by combining a computer-based tomography(CT)-algebraic iterative algorithm and Tunable Diode Laser Absorption Spectroscopy(TDLAS).This technique is used to analyze the distribution of vapor concentration and furnace temperature.It is shown that by using this strategy a variety of details can be obtained,which would otherwise be out of reach.展开更多
Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional...Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume ele- ments and energy shares were also discussed.展开更多
The combustion condition in coal-fired furnaces of the large power station boiler is very complex and the flame emissivity is one of the important combustion parameters. A measurement method of the flame emissivity ba...The combustion condition in coal-fired furnaces of the large power station boiler is very complex and the flame emissivity is one of the important combustion parameters. A measurement method of the flame emissivity based on the blackbody furnace calibration of CCD (Charge Coupled Device) cameras and the color image processing techniques of computer was introduced. The experimental research on the flame emissivity in a 200 MW boiler furnace and a 300 MW boiler furnace was conducted respectively through the several CCD cameras installed at different height in furnace. The measurement results show: the flame emissivity increases with the increase of the unit load, the flame emissivity of the burner areas in furnace is the highest and the flame emissivity decrease with the increase of height of furnace above the burners area.展开更多
This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and th...This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.展开更多
The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some inf...The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some influ- encing parameters, for example, the SiO2 reduction by carbon, were always neglected or inaccurate when calculating the TFT. According to the definition of TFT, the temperature of coke into raceway and the reduction rate of SiO2 in ash of coke and pulverized coal were obtained by analyzing the samples before tuyere in blast furnace. Taking full ac- count of different factors, a modified model for calculating the TFT in blast furnace was established. The effects of the oxygen enrichment rate, the reduction rate of SiO2 in raceway, the ash content in coke and pulverized coal and the pulverized coal injection (PCI) rate on TFT were determined quantitatively. The modified model was applied to selecting the used coal for PCI in blast furnace. Considering the different SiO2 contents of mixed coal, the calculated TFT remained a stable level. This showed that the selected coal could be suitable for PCI in blast furnace.展开更多
文摘To explore the inherent characteristics of combustion-induced heat transfer in a flat flame furnace,a sophisticated hybrid method is introduced by combining a computer-based tomography(CT)-algebraic iterative algorithm and Tunable Diode Laser Absorption Spectroscopy(TDLAS).This technique is used to analyze the distribution of vapor concentration and furnace temperature.It is shown that by using this strategy a variety of details can be obtained,which would otherwise be out of reach.
基金Project supported by National Natural Science Foundation of China(No. 60534030)Program for Changjiang Scholars and InnovativeResearch Team in University (No. IRT0434)
文摘Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume ele- ments and energy shares were also discussed.
文摘The combustion condition in coal-fired furnaces of the large power station boiler is very complex and the flame emissivity is one of the important combustion parameters. A measurement method of the flame emissivity based on the blackbody furnace calibration of CCD (Charge Coupled Device) cameras and the color image processing techniques of computer was introduced. The experimental research on the flame emissivity in a 200 MW boiler furnace and a 300 MW boiler furnace was conducted respectively through the several CCD cameras installed at different height in furnace. The measurement results show: the flame emissivity increases with the increase of the unit load, the flame emissivity of the burner areas in furnace is the highest and the flame emissivity decrease with the increase of height of furnace above the burners area.
基金Supported by the National Iranian Oil Company (NIOC)
文摘This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.
基金Sponsored by National Natural Science Foundation of China and Baosteel(51274026,50874129)National High-tech Research and Development Program of China(2009AA06Z105)
文摘The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some influ- encing parameters, for example, the SiO2 reduction by carbon, were always neglected or inaccurate when calculating the TFT. According to the definition of TFT, the temperature of coke into raceway and the reduction rate of SiO2 in ash of coke and pulverized coal were obtained by analyzing the samples before tuyere in blast furnace. Taking full ac- count of different factors, a modified model for calculating the TFT in blast furnace was established. The effects of the oxygen enrichment rate, the reduction rate of SiO2 in raceway, the ash content in coke and pulverized coal and the pulverized coal injection (PCI) rate on TFT were determined quantitatively. The modified model was applied to selecting the used coal for PCI in blast furnace. Considering the different SiO2 contents of mixed coal, the calculated TFT remained a stable level. This showed that the selected coal could be suitable for PCI in blast furnace.