A new inclusion complex thiourea with tetrabutylammonium salicylate and water, 4(C4H9)4N+C7H5O3 ?4(NH2)2CS?2H2O, has been prepared and characterized by X-ray crystallo- graphy. Crystal data: MoKα radiation, triclin...A new inclusion complex thiourea with tetrabutylammonium salicylate and water, 4(C4H9)4N+C7H5O3 ?4(NH2)2CS?2H2O, has been prepared and characterized by X-ray crystallo- graphy. Crystal data: MoKα radiation, triclinic, space group P1 with a = 13.505(5), b = 13.645(5), c = 30.720(10) ?, α = 92.872(7), β = 92.329(7), γ = 92.538(7)°, V = 5643.0(3) ?3, C96H184N12O14S4, Mr = 1858.79, Z = 2, Dc = 1.094 g/cm3, μ = 0.143 mm-1, F(000) = 2040, R = 0.0694 and wR = 0.1282 for 4303 observed reflections with I > 2σ(I). There are three different layer type host-lattices in the crystal structure of the title compound. All of them are formed by [(NH2)2CS·(C7H5O3 )]4 tetramers, but water molecules are located between tetramers and link them by hydrogen bonds to generate ribbons at c = 0 and 1/2, and isolated tetramers are arranged side by side at c = 1/4. The tetrabutylammonium cations are sandwiched between puckered layers.展开更多
The chemistry of inclusion compounds has a long history and is nowadays a subject of wide-ranging and intense study. With the awarding of the 1987 Nobel Prize in Chemistry to Donald J. Cram, Jean-Marie Lehn and Charle...The chemistry of inclusion compounds has a long history and is nowadays a subject of wide-ranging and intense study. With the awarding of the 1987 Nobel Prize in Chemistry to Donald J. Cram, Jean-Marie Lehn and Charles J. Pedersen for their fundamental work on 'host-guest' or 'supramolecular' systems, inclusion chemistry has come to the fore front in contemporary researches. Increasing varieties of novel inclusion compounds and new host molecules have been synthesized recently. The term 'crystal engineering' was coined by Schmidt to describe the rational design and control of molecular packing arrangements in the solid state, and the structural study of clathrates has contributed展开更多
Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, us...Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein we demonstrate that such host rearrangement is unfavorable and can be suppressed by introducing transition-metal ions into sodium layers. The electrode with stabilized P3-type stacking delivers superior rate capability, high energy efficiency, and excellent cycling performance. Owing to the cation-mixing nature, it performs the lowest lattice strain among all reported cathodes for sodium-ion batteries. Our findings highlight the significance of a stable host for sodium-ion storage and moreover underline the fundamental distinction in material design strategy between lithium-and sodium-ion batteries.展开更多
基金Supported by the National Natural Science Foundation of China (29973005) Natural Science Foundation of Beijing (2042013)
文摘A new inclusion complex thiourea with tetrabutylammonium salicylate and water, 4(C4H9)4N+C7H5O3 ?4(NH2)2CS?2H2O, has been prepared and characterized by X-ray crystallo- graphy. Crystal data: MoKα radiation, triclinic, space group P1 with a = 13.505(5), b = 13.645(5), c = 30.720(10) ?, α = 92.872(7), β = 92.329(7), γ = 92.538(7)°, V = 5643.0(3) ?3, C96H184N12O14S4, Mr = 1858.79, Z = 2, Dc = 1.094 g/cm3, μ = 0.143 mm-1, F(000) = 2040, R = 0.0694 and wR = 0.1282 for 4303 observed reflections with I > 2σ(I). There are three different layer type host-lattices in the crystal structure of the title compound. All of them are formed by [(NH2)2CS·(C7H5O3 )]4 tetramers, but water molecules are located between tetramers and link them by hydrogen bonds to generate ribbons at c = 0 and 1/2, and isolated tetramers are arranged side by side at c = 1/4. The tetrabutylammonium cations are sandwiched between puckered layers.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29973005) and we are grateful to Hong Kong Research Grants Council Earmarked Grant (CUHK 456/95P) for supporting this research work.
文摘The chemistry of inclusion compounds has a long history and is nowadays a subject of wide-ranging and intense study. With the awarding of the 1987 Nobel Prize in Chemistry to Donald J. Cram, Jean-Marie Lehn and Charles J. Pedersen for their fundamental work on 'host-guest' or 'supramolecular' systems, inclusion chemistry has come to the fore front in contemporary researches. Increasing varieties of novel inclusion compounds and new host molecules have been synthesized recently. The term 'crystal engineering' was coined by Schmidt to describe the rational design and control of molecular packing arrangements in the solid state, and the structural study of clathrates has contributed
基金The financial support from the National Basic Research Program of China(2014CB932300)Natural Science Foundation of Jiangsu Province of China(BK20170630)+1 种基金NSF of China(21633003 and 51602144)sponsored by the JST-CREST ‘‘Phase Interface Science for Highly Efficient Energy Utilization",JST(Japan)
文摘Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein we demonstrate that such host rearrangement is unfavorable and can be suppressed by introducing transition-metal ions into sodium layers. The electrode with stabilized P3-type stacking delivers superior rate capability, high energy efficiency, and excellent cycling performance. Owing to the cation-mixing nature, it performs the lowest lattice strain among all reported cathodes for sodium-ion batteries. Our findings highlight the significance of a stable host for sodium-ion storage and moreover underline the fundamental distinction in material design strategy between lithium-and sodium-ion batteries.