The continuous cooling transformation (CCT) diagrams of 86CrMoV7 steel samples including hot deformed and not hot deformed were constructed by dilatometry, metallography and transmission electron microscopy (TEM). The...The continuous cooling transformation (CCT) diagrams of 86CrMoV7 steel samples including hot deformed and not hot deformed were constructed by dilatometry, metallography and transmission electron microscopy (TEM). The results showed that hot deformation accelerated pearlite transformation and fine pearlite microstructure. Moreover, the undissolved carbides became the nucleating sites of pearlite, accelerated pearlite formation and fine pearlite if the steel had been deformed at high temperature. In contrast, undissolved carbides did not make any influence on pearlite transformation if the steel had not been deformed at high temperature.展开更多
The influences of hot deformation parameters on pearlite grain nucleation and growth during austenite-pearlite phase transformation in a steel wire rod have been investigated through quantitative analysis of microstru...The influences of hot deformation parameters on pearlite grain nucleation and growth during austenite-pearlite phase transformation in a steel wire rod have been investigated through quantitative analysis of microstructure parameters such as austenite grain size,ferrite grain size,pearlite colony size,and lamellar spacing.During hot deformation,the austenite grain size decreases due to recrystallization,providing extra nucleation sites for pearlite phase transformation,which decreases the ferrite grain size and pearlite colony size.Moreover,the stored strain energy in undercooled austenite accelerates carbon diffusion during pearlite phase transformation,which facilitates ferrite grain growth and increases pearlite colony size.Consequently,the competing influence of recrystallization and strain energy provides flexibility in adjusting ferrite grain size and colony size by hot deformation.This study highlights the critical role of hot deformation in determining the microstructure of pearlitic steel.展开更多
文摘The continuous cooling transformation (CCT) diagrams of 86CrMoV7 steel samples including hot deformed and not hot deformed were constructed by dilatometry, metallography and transmission electron microscopy (TEM). The results showed that hot deformation accelerated pearlite transformation and fine pearlite microstructure. Moreover, the undissolved carbides became the nucleating sites of pearlite, accelerated pearlite formation and fine pearlite if the steel had been deformed at high temperature. In contrast, undissolved carbides did not make any influence on pearlite transformation if the steel had not been deformed at high temperature.
基金supported by the National Natural Science Foundation(Grant No.52031013).
文摘The influences of hot deformation parameters on pearlite grain nucleation and growth during austenite-pearlite phase transformation in a steel wire rod have been investigated through quantitative analysis of microstructure parameters such as austenite grain size,ferrite grain size,pearlite colony size,and lamellar spacing.During hot deformation,the austenite grain size decreases due to recrystallization,providing extra nucleation sites for pearlite phase transformation,which decreases the ferrite grain size and pearlite colony size.Moreover,the stored strain energy in undercooled austenite accelerates carbon diffusion during pearlite phase transformation,which facilitates ferrite grain growth and increases pearlite colony size.Consequently,the competing influence of recrystallization and strain energy provides flexibility in adjusting ferrite grain size and colony size by hot deformation.This study highlights the critical role of hot deformation in determining the microstructure of pearlitic steel.