期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of Hot Deformation on Microstructure and Hardness of In-situ TiB_2/7075 Composite 被引量:1
1
作者 Lin GENG and Jie ZHANG P.O.Box 433, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China C.Bartels and G. Got tstein Institut fur Metallkunde und Metallphysik, Kopernikusstr.14, RWTH Aa 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期675-676,共1页
Hardness of the TiB2/7075 composite increased with increasing deformation temperature In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about I μm in length) and small MgZn2 phases (abou... Hardness of the TiB2/7075 composite increased with increasing deformation temperature In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about I μm in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 3000 C, some of the large pre- cipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450℃, all the precipitates in the an- nealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect. 展开更多
关键词 TIB Effect of hot Deformation on Microstructure and hardness of In-situ TiB2/7075 Composite
下载PDF
Hot macro-hardness of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass
2
作者 李钧 田瑞 肖学山 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期506-509,共4页
The hot hardness behavior of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass is studied from ambient temperature to the temperature over Tx (the onset crystallization temperature) using a hot macro-hardness tester and ... The hot hardness behavior of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass is studied from ambient temperature to the temperature over Tx (the onset crystallization temperature) using a hot macro-hardness tester and scanning electron microscopy (SEM). The results show that the hot hardness behavior of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass can be classified into 4 zones: the glassy zone in which the hardness almost linearly decreases with the increase of temperature, the viscoelastic zone in which the hardness is nearly unchanged, the viscous flow zone in which the hardness quickly tends towards near zero with temperature, and the crystallization zone in which the hardness sharply increases. The high temperature deformation behavior and the easy processable deformation region for bulk metallic glasses are also discussed on the basis of the hot marco-hardness. 展开更多
关键词 hot hardness DEFORMATION bulk metallic glass.
下载PDF
Effects of the deep rolling process on the surface roughness and properties of an Al-3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion 被引量:3
3
作者 Sajjad Sattari Amir Atrian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期814-825,共12页
Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to im... Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%Si C nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating Si C nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness. 展开更多
关键词 deep rolling nanocomposite mechanical milling hot extrusion roughness hardness
下载PDF
Elevated-temperature properties of one long-life high-strength gun steel 被引量:2
4
作者 WANG Maoqiu, DONG Han, and WANG Qi 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期67-67,共1页
The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures... The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the aaaaaaaaaaaaaaaa-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is suitable for production of long-life high-strength gun barrels with the combination of superior elevated-temperature strength and good impact toughness. 展开更多
关键词 secondary hardening steel elevated-temperature strength hot hardness impact toughness
下载PDF
Elevated-temperature properties of one long-life high-strength gun steel 被引量:3
5
作者 MaoqiuWang HanDong QiWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期62-66,共5页
The hardness, tensile strength and impact toughness of one quenched andtempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both atroom temperature and at elevated temperatures w... The hardness, tensile strength and impact toughness of one quenched andtempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both atroom temperature and at elevated temperatures were investigated in order to develop high-strengthsteel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensilestrength at elevated temperature in comparison with the commonly used G4335V high-strength gunsteel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strengthof the steel is attributed to the strong secondary hardening effect and high tempering softeningresistance caused by the tempering precipitation of fine Mo-rich M_2C carbides in the α-Fe matrix.The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, itsroom-temperature impact energy is much higher than the normal requirement of impact toughness forhigh strength gun steels. Therefore, the steel is suitable for production of long-life high-strengthgun barrels with the combination of superior elevated-temperature strength and good impacttoughness. 展开更多
关键词 secondary hardening steel elevated-temperature strength hot hardness impact toughness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部