A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue ...To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue resistance of the weld joint under the premise of not increasing thickness and strength of the TUR material. And a hot /warm roll-forming process( RFP) adopting partially induction heating to 700- 1 000℃ was carried out to fabricate LTUR. The deformation behaviors in the forming process and microstructure of LTUR have been investigated.Mechanical properties and fracture mechanism of the LTUR after hot / warm RFP have been systematically discussed. Moreover,the results are compared with those obtained in cold RFP. Mechanical properties of the LTUR deformed above the critical transformation temperature( A_(c3)) show high performance characteristics with marked fatigue resistance and superior toughness. Upon increasing the heating temperature from 700 to 900 ℃,the initial coarse ferrite-pearlite structure transform into equiaxed ultrafine ferrite( 1- 3 μm) and precipitates such as( Nb,Ti)( C,N) are uniformly distributed in the matrix. The average dislocation density of the specimens after hot rollforming at heating temperature of 900 ℃ decreases dramatically compared with those of the specimens subjected to the cold RFP. Furthermore,a typical characteristic of ductile fracture mechanism and the high impact energy are more convinced that the specimens deformed above 900 ℃ have obtained an optimal combination of strength and toughness.展开更多
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
文摘To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue resistance of the weld joint under the premise of not increasing thickness and strength of the TUR material. And a hot /warm roll-forming process( RFP) adopting partially induction heating to 700- 1 000℃ was carried out to fabricate LTUR. The deformation behaviors in the forming process and microstructure of LTUR have been investigated.Mechanical properties and fracture mechanism of the LTUR after hot / warm RFP have been systematically discussed. Moreover,the results are compared with those obtained in cold RFP. Mechanical properties of the LTUR deformed above the critical transformation temperature( A_(c3)) show high performance characteristics with marked fatigue resistance and superior toughness. Upon increasing the heating temperature from 700 to 900 ℃,the initial coarse ferrite-pearlite structure transform into equiaxed ultrafine ferrite( 1- 3 μm) and precipitates such as( Nb,Ti)( C,N) are uniformly distributed in the matrix. The average dislocation density of the specimens after hot rollforming at heating temperature of 900 ℃ decreases dramatically compared with those of the specimens subjected to the cold RFP. Furthermore,a typical characteristic of ductile fracture mechanism and the high impact energy are more convinced that the specimens deformed above 900 ℃ have obtained an optimal combination of strength and toughness.