Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of...Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of Radix isatidis extract during hot air drying and vacuum drying,where regression values and mean squared error were used as evaluation indexes to optimize the number of hidden layer nodes and determine the topological structure of artificial neural networks model.In addition,the drying curves for the different drying parameters were analyzed.Results:The optimal topological structure of the moisture ratio prediction model for hot air drying and vacuum drying of Radix isatidis extract were“4-9-1”and“5-9-1”respectively,and the regression values between the predicted value and the experimental value is close to 1.This indicates that it has a high prediction accuracy.The moisture ratio gradually decreases with an increase in the drying time,reducing the loading,initial moisture content,increasing the temperature,and pressure can shorten the drying time and improve the drying efficiency.Conclusion:Artificial neural networks technology has the advantages of rapid and accurate prediction,and can provide a theoretical basis and technical support for online prediction during the drying process of the extract.展开更多
In order to study the effects of chemical osmotic pretreatment on the characteristics and quality of blueberry under hot air drying,fresh blueberries were pretreated with 2.5 g/100 mL K2CO3+0.6 g/100 mL olive oil,and ...In order to study the effects of chemical osmotic pretreatment on the characteristics and quality of blueberry under hot air drying,fresh blueberries were pretreated with 2.5 g/100 mL K2CO3+0.6 g/100 mL olive oil,and 5.0 g/100 mL K2CO3+0.6 g/100 mL olive oil at(45±0.5)℃,respectively.The changes of water content,rehydration,hardness,microstructure,color difference,active ingredient anthocyanin,total phenol and DPPH radical scavenging capacity of dried blueberries in different treatment groups under hot air drying were compared and analyzed.The results showed that the dehydration rates of blueberries vary greatly according to the type of pretreatments when the samples were dried to the same water content with hot air.Specifically,the dehydration rate of dried blueberries pretreated by 5.0%K2CO3 solution was the highest,followed by 2.5%K2CO3 osmotic pretreatment and lastly the control group;the corresponding dehydration time was 10,14 and 20h,respectively.The physical qualities of dried blueberries,involving the browning degree,color difference,rehydration and microstructure,were significantly different between the chemical osmotic pretreatment group and the control group(P<0.05).The chemical osmotic pretreatment of K2CO3 solution increased the dehydration rate of the samples,shortened the drying time and maintained the quality of blueberries dried with hot air.There was no significant difference between the physical quality of dried blueberries pretreated by 2.5%and 5.0%K2CO3 solution(P>0.05),whereas there was significant difference in drying time and nutrient quality which is characterized by total phenols,anthocyanins,DPPH radical scavenging rate,soluble total sugar(P<0.05).Conclusion:5.0%K2CO3 osmotic pretreatment combining with hot air drying can improve the dehydration rate,shorten the drying time and maintain the physical and nutritional quality.展开更多
This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact.This study focused on the implementation and development of dynamic insulation t...This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact.This study focused on the implementation and development of dynamic insulation technology for a sustainable and energy-efficient future in the region,especially in Iraq.The study assessed the energy efficiency of dynamic insulation technology by analyzing three wallmodels(static,dynamic,and modified)during thewinter season.This paper expands the analysis to include a hot,dry summer scenario,providing valuable insights into the year-round performance of dynamic walls and enabling sustainable and energy-efficient solutions for Iraq’s climate.The study evaluates the thermal efficiency of the dynamic intake and exhaust facades during the cooling season for the city of Baghdad.The finding indicated that the dynamic intake facade reduces energy consumption by 16.3%for the dynamic wall and 17.2%for the modified dynamic wall.In addition,the dynamic exhaust front reduces energy consumption by 46%during the cooling season,with the maximum permissible exhaust air level.Dynamic insulation is suitable for hot and dry climates,improving energy consumption.展开更多
[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different ...[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.展开更多
Pufferfish is prone to deterioration due to abundant nutrients and high moisture content.Drying technology can extend the shelf life and enhance the flavor quality of aquatic products.The study investigated the effect...Pufferfish is prone to deterioration due to abundant nutrients and high moisture content.Drying technology can extend the shelf life and enhance the flavor quality of aquatic products.The study investigated the effect of hot air drying(HAD),microwave vacuum drying(MVD)and hot air assisted radio frequency drying(HARFD)on the taste and volatile profiles of Takifugu obscurus.Different drying methods had significant influence on the color,rehydration,5’-nucleotides,free amino acids and volatile components(P<0.05).The results showed that HAD and HARFD could promote the flavor of T.obscurus by producing higher equivalent umami concentration(EUC)values,which were about two times of MVD group,and more pronounced pleasant odor according to sensory analysis.HAD is more appropriate for industrial application than HARFD and MVD considering the economic benefits.This study could provide a reference for the industrial application of drying T.obscurus.展开更多
The objective was to study the effect of alginate coating on polyphenol oxidase (PPO) activity and colour of ‘Starking’ apple cubes during dehydration with hot air. Apple cubes were dehydrated at 20oC, 35oC, or 40oC...The objective was to study the effect of alginate coating on polyphenol oxidase (PPO) activity and colour of ‘Starking’ apple cubes during dehydration with hot air. Apple cubes were dehydrated at 20oC, 35oC, or 40oC, with a parallel airflow. Analysis of PPO activity, colour (L*, a*, b*) and dry matter were performed along the dehydration process at each temperature. All samples presented a peak in relative PPO activity in the beginning of the drying. Exponential models fitted well the experimental data after the peak. Cubes without coating presented lower PPO activity, suggesting lower browning, than coated samples throughout the dehydration process, for all temperatures. Better results for coated samples were obtained with a perpendicular airflow drying at 40oC, after dipping the whole apple in water at 60oC for 10 min. In order to prevent coated samples from browning, drying by perpendicular airflow preceded by a thermal treatment of the whole apple is required.展开更多
The effects of drying temperature and extraction methods on α-mangostin content in mangosteen pericarp (Garcinia mangostana L.) powder were investigated. In the first part of experiment suitable drying temperature ...The effects of drying temperature and extraction methods on α-mangostin content in mangosteen pericarp (Garcinia mangostana L.) powder were investigated. In the first part of experiment suitable drying temperature for retention α-mangostin content was determined. Three levels of drying temperatures (55, 65 and 75 ℃) were used in this study. The drying rates were increased with drying temperature. Room temperature extraction method was performed to investigate the effect of drying temperature on retention α-mangostin content in mangosteen pericarp. The α-mangostin content extracted at three different drying temperatures (55, 65 and 75 ℃) was 35.98 ± 0.49%, 40.32 ± 0.24%, and 37.79±0.34% w/w, respectively. The results showed that the suitable temperature for drying mangosteen pericarp was 65 ℃ that gave the highest of α-mangostin content. The second part of experiment was the comparison between extraction methods, such as shaking water bath extraction (SWE), soxhlet extraction (SE) and microwave-assisted extraction (MAE). The results show that MAE gave the highest extraction rate and α-mangostin content as compare to SWE and SE. The α-mangostin content extraction from SWE, SE and MAE are 45.83 ± 0.02, 34.82± 0.17 and 49.79 ± 0.15% w/w of crude extract, respectively.展开更多
The heating area of the material is large and the thermal efficiency is high,but it is n ecessary to control the suitable drying temperature ofdiffere nt medici nal materials to preserve the effective in gredients.D i...The heating area of the material is large and the thermal efficiency is high,but it is n ecessary to control the suitable drying temperature ofdiffere nt medici nal materials to preserve the effective in gredients.D iff ere nt kinds of Chinese medicine need different drying conditions to fulfill good drying requirements.Natural drying in the shade is one of the traditional drying methods,which takes a long time and is easily affected by the weather.The water volatilizes slowly.It is prone to mildew and discoloration during the drying process.However,it can better preserve the volatile oil components of Chinese medicine.The hot-air drying machine has lower requirements.The medicinal materials have a large heating area and high thermal efficiency,but it is necessary to control the appropriate drying temperature of different medicinal materials in order to preserve the active ingredients of the medicinal materials;it is not suitable for medicinal materials that stick and bind easily.The microwave drying method possesses superiority in drying some valuable medicinal materials such as Ren she n(Radix et Rhizoma Ginseng)and Lurong(Co「nu Cervi Pantotrichum),and the effective ingredients are preserved at a high degree;it can also achieve the purpose of killing enzymes and protecting glycosides and have a good bactericidal effect,but it is not suitable for Chinese medicines containing heat-sensitive ingredients,because it will destroy most of the proteins,amino acids,and peptides of Chinese medicine and result in the loss of efficacy.The far-infrared drying method is suitable for drying thin-layer medicinal materials and is friendly to the environment.Freeze-drying can preserve the active ingredients very well and greatly retain the efficacy,but it has obvious limitations in preserving some Chinese medicinal materials that need to kill enzymes and protect glycosides;besides,the cost is relatively high and the drying time is long.展开更多
The microwave coupled with hot air(MCHA)drying method was used in this test to dry hawthorn slices The effect of initial microwave power density level(6 W/g to 12 W/g),hot air temperature(55℃ to 70℃),and hot air vel...The microwave coupled with hot air(MCHA)drying method was used in this test to dry hawthorn slices The effect of initial microwave power density level(6 W/g to 12 W/g),hot air temperature(55℃ to 70℃),and hot air velocity(1 m/s to 3 m/s)on the quality attributes of rehydration ratio(Rf),organic acid(OA)and ascorbic acid(AA)of the dehydrated hawthorn slices was analyzed using a response surface methodology.An orthogonal rotatable central composite with three factors and at five levels was used to develop predictive regression models for the responses.The prediction mathematical model of Rf,OA and AA of the hawthorn slice was determined by analysis of variance.Factor and response variables as well as the prediction mathematical model,the optimal drying process of Rf,OA and AA of the hawthorn slice were determined by using the Design-Expert software.The comprehensive optimal conditions were as follows:initial microwave power density 12 W/g,hot air temperature 55℃ and hot air velocity 1.56 m/s.展开更多
Hot air temperature,hot air humidity,and hot wind speed were selected as independent variables of quadratic orthogonal rotation combination test design through single factor test.Drying time,energy consumption,chromat...Hot air temperature,hot air humidity,and hot wind speed were selected as independent variables of quadratic orthogonal rotation combination test design through single factor test.Drying time,energy consumption,chromatism value,luminosity value,hardness,rehydration ratio,and other indexes of the product were used as the response value of the test.Response surface methodology(RSM)was used to analyze the effects of independent variables on the quality of tiger nut(Cyperus esculentus L.),and the process parameters were combined and optimized.The results show that the suitable technological conditions for hot air drying of tiger nut are as follows:hot air temperature of 63.15°C,hot air humidity of 44.92%,hot air wind speed of 2.48 m/s.Under these conditions,the product has the advantages of the short drying cycle,low energy consumption,good color and luster,low hardness and good rehydration performance.The fatty acid composition and content of tiger nut oil were determined by gas chromatography.The fatty acid composition and content of tiger nut oil were compared with those of soybean oil,olive oil,rapeseed oil and sesame oil,the results show that among the saturated fatty acids in tiger nut oil,palm oil had the highest content of 11.172%,which was between soybean oil and olive oil.The main composition of unsaturated fatty acids in tiger nut oil is oleic acid,with a content of 77.605%,which is 3.6 times higher than that of soybean oil,and even higher than that of olive oil.展开更多
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup...The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.展开更多
Yellow maize as raw materials,hot air drying was used to reduce moisture content,and the tempering was implemented after drying.This study aimed to investigate the effects of hot air drying temperature and tempering t...Yellow maize as raw materials,hot air drying was used to reduce moisture content,and the tempering was implemented after drying.This study aimed to investigate the effects of hot air drying temperature and tempering time on the properties of maize starch.The wet milling was used to extract maize starch.Starch yield,protein content,amylose and amylopectin content,transparency and coagulation,solubility index and swelling power,color,pasting properties,and gelatinization properties were researched.The results showed that when the hot air temperature increased,the properties such as starch yield,amylopectin content,transparency,solubility,swelling power,whiteness decreased,and properties such as protein content and amylose content,coagulation,gelatinization temperature increased.Compared to drying temperature,tempering time has a less remarkable effect on the maize starch properties.The maize starch with better whiteness,solubility,swelling power could be obtained by adjusting tempering time.展开更多
The effects of temperature and step-down relative humidity controlled hot-air drying(THC-HAD)on the drying kinetics,energy efficiency and quality,i.e.,rehydration ratio(RR),color parameters(L*,a*,b*),total color diffe...The effects of temperature and step-down relative humidity controlled hot-air drying(THC-HAD)on the drying kinetics,energy efficiency and quality,i.e.,rehydration ratio(RR),color parameters(L*,a*,b*),total color difference(ΔE*),Panax notoginseng saponins(PNS)content,and ginsenosides content(R1,Rg1,Re,Rd,Rb1)of Panax notoginseng roots were evaluated.The drying time was significantly affected by the drying temperature followed by the relative humidity(RH)of the drying air.Special combination of drying conditions,i.e.,drying temperature of 50°C,relative humidity of 40%for 3 h and then continuous dehumidification from 40%to 8%allowed to shorten the drying time by 25%compared to drying at the same temperature and continuous dehumidification.The longer was the drying time under constant high RH of drying air,the lower was the RR of dried samples.The step-down RH strategy contributed to the formation of a porous structure,enhancement of drying efficiency and quality improvement.Generally,the ginsenosides content increased with the increase in temperature,while no obvious trend was recorded for ginsenoside R1.The contents of the ginsenoside R1,Rg1,Rb1 and PNS decreased with the increase in the drying time under constant high RH.Taking into account the drying time,energy consumption and quality attributes,drying at the temperature of 50°C,constant RH of 40%for 3 h and then step-down RH from 40%to 8%was proposed as the most favorable combination of drying conditions for dehydration of whole Panax notoginseng roots.展开更多
The flow fields of hot air in the dryer for drying colored potatoes of which characteristics are highly sensitive to the temperature were simulated using computational fluid dynamics(CFD)simulation.The local air veloc...The flow fields of hot air in the dryer for drying colored potatoes of which characteristics are highly sensitive to the temperature were simulated using computational fluid dynamics(CFD)simulation.The local air velocity decreased as the distance from the flow inlet increased.The mass and heat transfer coefficients increased from 0.666×10^(-2) m/s to 1.711×10^(-2) m/s,and 6.555 W/(m^(2)·K)to 16.834 W/(m^(2)·K),respectively,as the air velocity increased from 0.207 m/s to 1.567 m/s at 60°C.The drying simulation model using the heat and mass transfer model made accurate predictions.The thermal properties of colored potato,such as the thermal conductivity and specific heat,decreased significantly from 0.440 W/(m·K)to 0.034 W/(m·K)and 3906.45 J/(kg·K)to 2198.52 J/(kg·K),respectively,as the moisture content decreased from 78% to 5%.With the variable thermal and physical properties,the heat transfer simulation model made accurate predictions of the hot-air drying characteristics for the colored potatoes,and the RMSE values for all cases were(1.85±0.27)℃.展开更多
Exploring new drying technology can help to deal with the challenge of better preservation of rhizome medicinal materials in the traditional Chinese medicine industry.In current work,combined infrared and hot-air dryi...Exploring new drying technology can help to deal with the challenge of better preservation of rhizome medicinal materials in the traditional Chinese medicine industry.In current work,combined infrared and hot-air drying(IR-HAD)was employed to Panax notoginseng roots and its effect on drying kinetics,energy efficiency and quality,i.e.,rehydration ratio(RR),color parameters(L^(*),a^(*),b^(*)),total color difference(ΔE),Panax notoginseng saponins(PNS)content,and ginsenosides content(R_(1),R^(g1),R_(e),R_(d),R_(b1))were evaluated.Hot air drying(HAD)was used as the control.Results showed that the increase in drying temperature significantly shortened drying time and reduced energy consumption.The shortest drying time of 43.0 h and lowest specific energy consumption of 15.9 kW·h/(kg-water)were obtained by IR-HAD at 55°C.The decrease of radiation distance and the increase of radiation power led to the shortening of drying time.However,high drying temperature resulted in largeΔE values,large collapse structure,and RR of samples.The drying time of Panax notoginseng roots dried by IR-HAD at a drying temperature of 50°C was shorter(15.5%)than HAD dried at the same drying temperature.The contents of R_(1),R_(g1),R_(e),R_(b1),and PNS were higher when the samples were dried by IR-HAD than those dried by HAD at the same temperature of 50°C.Moreover,the IR-HAD dried samples shortened 15.5%drying time and saved 22.1%energy consumption compared with HAD.Therefore,the optimal process condition was Panax notoginseng roots under IR-HAD at drying temperature of 50°C,radiation distance of 12 cm and radiation power of 1350 W,which can shorten drying time,maintain high ginsenosides contents and satisfactory apparent qualities.展开更多
[目的]研究热风-真空冷冻联合干燥对脆性龙眼果干品质及益生活性的影响,为高品质龙眼果干工业化节能干燥模式提供理论依据.[方法]以热风干燥、真空冷冻干燥龙眼果干为对照,比较分析热风-真空冷冻联合干燥对脆性龙眼果干水分含量、水分...[目的]研究热风-真空冷冻联合干燥对脆性龙眼果干品质及益生活性的影响,为高品质龙眼果干工业化节能干燥模式提供理论依据.[方法]以热风干燥、真空冷冻干燥龙眼果干为对照,比较分析热风-真空冷冻联合干燥对脆性龙眼果干水分含量、水分活度、皱缩率、复水比等理化特性和总糖、多糖等营养品质的影响.同时采用GC-MS测定风味物质变化,电量表测定能源消耗量.并选用植物乳杆菌和嗜酸乳杆菌发酵龙眼果干,比较发酵过程中活菌数、总糖、还原糖以及短链脂肪酸的变化,评价热风-真空冷冻联合干燥对龙眼体外益生活性的影响.[结果]热风-真空冷冻联合干燥龙眼果干的水分含量、水分活度和皱缩率显著低于热风干燥,而复水比显著高于热风干燥.在总糖、多糖含量以及挥发性风味物质种类和总量上,热风-真空冷冻联合干燥低于真空冷冻干燥而高于热风干燥.在能源消耗上,热风-真空冷冻联合干燥比真空冷冻干燥节约干燥时间12.16%,节约单位能耗25.40%.在益生活性方面,植物乳杆菌和嗜酸乳杆菌均能通过发酵龙眼干增加活菌数量,利用龙眼干中的总糖产生短链脂肪酸,降低发酵液pH,且益生效果受干燥方式和菌株种类的影响较大.当植物乳杆菌发酵热风-真空冷冻干燥的龙眼果干48 h后,活菌数生长最多可达12.40 lg cfu/mL,高于真空冷冻干燥、热风干燥和新鲜龙眼.嗜酸乳杆菌发酵48 h后,热风-真空冷冻联合干燥活菌数达11.84 lg cfu/mL,与真空冷冻干燥接近,低于热风干燥,但高于新鲜龙眼.[结论]热风-真空冷冻联合干燥结合了热风干燥和真空冷冻干燥两种干燥方式的特点,可以显著缩短干燥时间,节约能耗,提高干燥效率和果干品质.展开更多
基金found by Guizhou Province Science and Technology Plan Project(No.Qiankeheji-ZK(2021)General 533)Domestic First-Class Discipline Construction Project in Guizhou Province(No.GNYL(2017)008)Guizhou Province Drug New Formulation New Process Technology Innovation Talent Team Project(No.Qiankehe Platform Talents(2017)5655).
文摘Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of Radix isatidis extract during hot air drying and vacuum drying,where regression values and mean squared error were used as evaluation indexes to optimize the number of hidden layer nodes and determine the topological structure of artificial neural networks model.In addition,the drying curves for the different drying parameters were analyzed.Results:The optimal topological structure of the moisture ratio prediction model for hot air drying and vacuum drying of Radix isatidis extract were“4-9-1”and“5-9-1”respectively,and the regression values between the predicted value and the experimental value is close to 1.This indicates that it has a high prediction accuracy.The moisture ratio gradually decreases with an increase in the drying time,reducing the loading,initial moisture content,increasing the temperature,and pressure can shorten the drying time and improve the drying efficiency.Conclusion:Artificial neural networks technology has the advantages of rapid and accurate prediction,and can provide a theoretical basis and technical support for online prediction during the drying process of the extract.
基金Supported by Science and Technology Innovation Project in Hunan Academy of Agricultural Sciences(2017JC66)International Science and Technology Innovation Cooperation Base Construction Project in Hunan(2018WK4011)~~
文摘In order to study the effects of chemical osmotic pretreatment on the characteristics and quality of blueberry under hot air drying,fresh blueberries were pretreated with 2.5 g/100 mL K2CO3+0.6 g/100 mL olive oil,and 5.0 g/100 mL K2CO3+0.6 g/100 mL olive oil at(45±0.5)℃,respectively.The changes of water content,rehydration,hardness,microstructure,color difference,active ingredient anthocyanin,total phenol and DPPH radical scavenging capacity of dried blueberries in different treatment groups under hot air drying were compared and analyzed.The results showed that the dehydration rates of blueberries vary greatly according to the type of pretreatments when the samples were dried to the same water content with hot air.Specifically,the dehydration rate of dried blueberries pretreated by 5.0%K2CO3 solution was the highest,followed by 2.5%K2CO3 osmotic pretreatment and lastly the control group;the corresponding dehydration time was 10,14 and 20h,respectively.The physical qualities of dried blueberries,involving the browning degree,color difference,rehydration and microstructure,were significantly different between the chemical osmotic pretreatment group and the control group(P<0.05).The chemical osmotic pretreatment of K2CO3 solution increased the dehydration rate of the samples,shortened the drying time and maintained the quality of blueberries dried with hot air.There was no significant difference between the physical quality of dried blueberries pretreated by 2.5%and 5.0%K2CO3 solution(P>0.05),whereas there was significant difference in drying time and nutrient quality which is characterized by total phenols,anthocyanins,DPPH radical scavenging rate,soluble total sugar(P<0.05).Conclusion:5.0%K2CO3 osmotic pretreatment combining with hot air drying can improve the dehydration rate,shorten the drying time and maintain the physical and nutritional quality.
文摘This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact.This study focused on the implementation and development of dynamic insulation technology for a sustainable and energy-efficient future in the region,especially in Iraq.The study assessed the energy efficiency of dynamic insulation technology by analyzing three wallmodels(static,dynamic,and modified)during thewinter season.This paper expands the analysis to include a hot,dry summer scenario,providing valuable insights into the year-round performance of dynamic walls and enabling sustainable and energy-efficient solutions for Iraq’s climate.The study evaluates the thermal efficiency of the dynamic intake and exhaust facades during the cooling season for the city of Baghdad.The finding indicated that the dynamic intake facade reduces energy consumption by 16.3%for the dynamic wall and 17.2%for the modified dynamic wall.In addition,the dynamic exhaust front reduces energy consumption by 46%during the cooling season,with the maximum permissible exhaust air level.Dynamic insulation is suitable for hot and dry climates,improving energy consumption.
文摘[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.
基金supported by The National Natural Science Foundation of China (32001824, 31972198, 31901813, 31901816, 32001827)Startup Fund for Youngman Research at SJTU (SFYR at SJTU)
文摘Pufferfish is prone to deterioration due to abundant nutrients and high moisture content.Drying technology can extend the shelf life and enhance the flavor quality of aquatic products.The study investigated the effect of hot air drying(HAD),microwave vacuum drying(MVD)and hot air assisted radio frequency drying(HARFD)on the taste and volatile profiles of Takifugu obscurus.Different drying methods had significant influence on the color,rehydration,5’-nucleotides,free amino acids and volatile components(P<0.05).The results showed that HAD and HARFD could promote the flavor of T.obscurus by producing higher equivalent umami concentration(EUC)values,which were about two times of MVD group,and more pronounced pleasant odor according to sensory analysis.HAD is more appropriate for industrial application than HARFD and MVD considering the economic benefits.This study could provide a reference for the industrial application of drying T.obscurus.
文摘The objective was to study the effect of alginate coating on polyphenol oxidase (PPO) activity and colour of ‘Starking’ apple cubes during dehydration with hot air. Apple cubes were dehydrated at 20oC, 35oC, or 40oC, with a parallel airflow. Analysis of PPO activity, colour (L*, a*, b*) and dry matter were performed along the dehydration process at each temperature. All samples presented a peak in relative PPO activity in the beginning of the drying. Exponential models fitted well the experimental data after the peak. Cubes without coating presented lower PPO activity, suggesting lower browning, than coated samples throughout the dehydration process, for all temperatures. Better results for coated samples were obtained with a perpendicular airflow drying at 40oC, after dipping the whole apple in water at 60oC for 10 min. In order to prevent coated samples from browning, drying by perpendicular airflow preceded by a thermal treatment of the whole apple is required.
文摘The effects of drying temperature and extraction methods on α-mangostin content in mangosteen pericarp (Garcinia mangostana L.) powder were investigated. In the first part of experiment suitable drying temperature for retention α-mangostin content was determined. Three levels of drying temperatures (55, 65 and 75 ℃) were used in this study. The drying rates were increased with drying temperature. Room temperature extraction method was performed to investigate the effect of drying temperature on retention α-mangostin content in mangosteen pericarp. The α-mangostin content extracted at three different drying temperatures (55, 65 and 75 ℃) was 35.98 ± 0.49%, 40.32 ± 0.24%, and 37.79±0.34% w/w, respectively. The results showed that the suitable temperature for drying mangosteen pericarp was 65 ℃ that gave the highest of α-mangostin content. The second part of experiment was the comparison between extraction methods, such as shaking water bath extraction (SWE), soxhlet extraction (SE) and microwave-assisted extraction (MAE). The results show that MAE gave the highest extraction rate and α-mangostin content as compare to SWE and SE. The α-mangostin content extraction from SWE, SE and MAE are 45.83 ± 0.02, 34.82± 0.17 and 49.79 ± 0.15% w/w of crude extract, respectively.
文摘The heating area of the material is large and the thermal efficiency is high,but it is n ecessary to control the suitable drying temperature ofdiffere nt medici nal materials to preserve the effective in gredients.D iff ere nt kinds of Chinese medicine need different drying conditions to fulfill good drying requirements.Natural drying in the shade is one of the traditional drying methods,which takes a long time and is easily affected by the weather.The water volatilizes slowly.It is prone to mildew and discoloration during the drying process.However,it can better preserve the volatile oil components of Chinese medicine.The hot-air drying machine has lower requirements.The medicinal materials have a large heating area and high thermal efficiency,but it is necessary to control the appropriate drying temperature of different medicinal materials in order to preserve the active ingredients of the medicinal materials;it is not suitable for medicinal materials that stick and bind easily.The microwave drying method possesses superiority in drying some valuable medicinal materials such as Ren she n(Radix et Rhizoma Ginseng)and Lurong(Co「nu Cervi Pantotrichum),and the effective ingredients are preserved at a high degree;it can also achieve the purpose of killing enzymes and protecting glycosides and have a good bactericidal effect,but it is not suitable for Chinese medicines containing heat-sensitive ingredients,because it will destroy most of the proteins,amino acids,and peptides of Chinese medicine and result in the loss of efficacy.The far-infrared drying method is suitable for drying thin-layer medicinal materials and is friendly to the environment.Freeze-drying can preserve the active ingredients very well and greatly retain the efficacy,but it has obvious limitations in preserving some Chinese medicinal materials that need to kill enzymes and protect glycosides;besides,the cost is relatively high and the drying time is long.
文摘The microwave coupled with hot air(MCHA)drying method was used in this test to dry hawthorn slices The effect of initial microwave power density level(6 W/g to 12 W/g),hot air temperature(55℃ to 70℃),and hot air velocity(1 m/s to 3 m/s)on the quality attributes of rehydration ratio(Rf),organic acid(OA)and ascorbic acid(AA)of the dehydrated hawthorn slices was analyzed using a response surface methodology.An orthogonal rotatable central composite with three factors and at five levels was used to develop predictive regression models for the responses.The prediction mathematical model of Rf,OA and AA of the hawthorn slice was determined by analysis of variance.Factor and response variables as well as the prediction mathematical model,the optimal drying process of Rf,OA and AA of the hawthorn slice were determined by using the Design-Expert software.The comprehensive optimal conditions were as follows:initial microwave power density 12 W/g,hot air temperature 55℃ and hot air velocity 1.56 m/s.
基金supported by the model and demonstration of comprehensive utilization of agricultural facilities based on the increasing income of tobacco farmers in Henan tobacco-growing area(Grant No.2018410000270095)the Special Project for scientists in the 13th Five-Year Plan of China's Agricultural Research System(CARS-04-PS25).
文摘Hot air temperature,hot air humidity,and hot wind speed were selected as independent variables of quadratic orthogonal rotation combination test design through single factor test.Drying time,energy consumption,chromatism value,luminosity value,hardness,rehydration ratio,and other indexes of the product were used as the response value of the test.Response surface methodology(RSM)was used to analyze the effects of independent variables on the quality of tiger nut(Cyperus esculentus L.),and the process parameters were combined and optimized.The results show that the suitable technological conditions for hot air drying of tiger nut are as follows:hot air temperature of 63.15°C,hot air humidity of 44.92%,hot air wind speed of 2.48 m/s.Under these conditions,the product has the advantages of the short drying cycle,low energy consumption,good color and luster,low hardness and good rehydration performance.The fatty acid composition and content of tiger nut oil were determined by gas chromatography.The fatty acid composition and content of tiger nut oil were compared with those of soybean oil,olive oil,rapeseed oil and sesame oil,the results show that among the saturated fatty acids in tiger nut oil,palm oil had the highest content of 11.172%,which was between soybean oil and olive oil.The main composition of unsaturated fatty acids in tiger nut oil is oleic acid,with a content of 77.605%,which is 3.6 times higher than that of soybean oil,and even higher than that of olive oil.
文摘The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.31271972,No.31671907,No.52006109)and the University Science and Technology Innovation Team Support Plan of Henan Province of China in 2016(16IRTSTHN009).
文摘Yellow maize as raw materials,hot air drying was used to reduce moisture content,and the tempering was implemented after drying.This study aimed to investigate the effects of hot air drying temperature and tempering time on the properties of maize starch.The wet milling was used to extract maize starch.Starch yield,protein content,amylose and amylopectin content,transparency and coagulation,solubility index and swelling power,color,pasting properties,and gelatinization properties were researched.The results showed that when the hot air temperature increased,the properties such as starch yield,amylopectin content,transparency,solubility,swelling power,whiteness decreased,and properties such as protein content and amylose content,coagulation,gelatinization temperature increased.Compared to drying temperature,tempering time has a less remarkable effect on the maize starch properties.The maize starch with better whiteness,solubility,swelling power could be obtained by adjusting tempering time.
基金supported in part by the Hebei Province Key Research and Development Project(Grant No.203777119D,19227210D)in part by the Scientific Research Projects of Universities in Hebei Province(Grant No.ZD2021056)in part by the Hebei Province College and Middle School Students Science and Technology Innovation Ability Cultivation Project(Grant No.2021H060505)and part by China Agriculture Research System of MOF and MARA(CARS-21).
文摘The effects of temperature and step-down relative humidity controlled hot-air drying(THC-HAD)on the drying kinetics,energy efficiency and quality,i.e.,rehydration ratio(RR),color parameters(L*,a*,b*),total color difference(ΔE*),Panax notoginseng saponins(PNS)content,and ginsenosides content(R1,Rg1,Re,Rd,Rb1)of Panax notoginseng roots were evaluated.The drying time was significantly affected by the drying temperature followed by the relative humidity(RH)of the drying air.Special combination of drying conditions,i.e.,drying temperature of 50°C,relative humidity of 40%for 3 h and then continuous dehumidification from 40%to 8%allowed to shorten the drying time by 25%compared to drying at the same temperature and continuous dehumidification.The longer was the drying time under constant high RH of drying air,the lower was the RR of dried samples.The step-down RH strategy contributed to the formation of a porous structure,enhancement of drying efficiency and quality improvement.Generally,the ginsenosides content increased with the increase in temperature,while no obvious trend was recorded for ginsenoside R1.The contents of the ginsenoside R1,Rg1,Rb1 and PNS decreased with the increase in the drying time under constant high RH.Taking into account the drying time,energy consumption and quality attributes,drying at the temperature of 50°C,constant RH of 40%for 3 h and then step-down RH from 40%to 8%was proposed as the most favorable combination of drying conditions for dehydration of whole Panax notoginseng roots.
基金This work was supported by Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,Forestry and Fisheries(IPET)thorugh High Value-added Food Technology Development Program,funded by Minstry of Agriculture,Food and Rural Affairs(Grant No.314047-2)This study has been worked with the support of a research grant of Kangwon National University in 2016.
文摘The flow fields of hot air in the dryer for drying colored potatoes of which characteristics are highly sensitive to the temperature were simulated using computational fluid dynamics(CFD)simulation.The local air velocity decreased as the distance from the flow inlet increased.The mass and heat transfer coefficients increased from 0.666×10^(-2) m/s to 1.711×10^(-2) m/s,and 6.555 W/(m^(2)·K)to 16.834 W/(m^(2)·K),respectively,as the air velocity increased from 0.207 m/s to 1.567 m/s at 60°C.The drying simulation model using the heat and mass transfer model made accurate predictions.The thermal properties of colored potato,such as the thermal conductivity and specific heat,decreased significantly from 0.440 W/(m·K)to 0.034 W/(m·K)and 3906.45 J/(kg·K)to 2198.52 J/(kg·K),respectively,as the moisture content decreased from 78% to 5%.With the variable thermal and physical properties,the heat transfer simulation model made accurate predictions of the hot-air drying characteristics for the colored potatoes,and the RMSE values for all cases were(1.85±0.27)℃.
文摘Exploring new drying technology can help to deal with the challenge of better preservation of rhizome medicinal materials in the traditional Chinese medicine industry.In current work,combined infrared and hot-air drying(IR-HAD)was employed to Panax notoginseng roots and its effect on drying kinetics,energy efficiency and quality,i.e.,rehydration ratio(RR),color parameters(L^(*),a^(*),b^(*)),total color difference(ΔE),Panax notoginseng saponins(PNS)content,and ginsenosides content(R_(1),R^(g1),R_(e),R_(d),R_(b1))were evaluated.Hot air drying(HAD)was used as the control.Results showed that the increase in drying temperature significantly shortened drying time and reduced energy consumption.The shortest drying time of 43.0 h and lowest specific energy consumption of 15.9 kW·h/(kg-water)were obtained by IR-HAD at 55°C.The decrease of radiation distance and the increase of radiation power led to the shortening of drying time.However,high drying temperature resulted in largeΔE values,large collapse structure,and RR of samples.The drying time of Panax notoginseng roots dried by IR-HAD at a drying temperature of 50°C was shorter(15.5%)than HAD dried at the same drying temperature.The contents of R_(1),R_(g1),R_(e),R_(b1),and PNS were higher when the samples were dried by IR-HAD than those dried by HAD at the same temperature of 50°C.Moreover,the IR-HAD dried samples shortened 15.5%drying time and saved 22.1%energy consumption compared with HAD.Therefore,the optimal process condition was Panax notoginseng roots under IR-HAD at drying temperature of 50°C,radiation distance of 12 cm and radiation power of 1350 W,which can shorten drying time,maintain high ginsenosides contents and satisfactory apparent qualities.
文摘[目的]研究热风-真空冷冻联合干燥对脆性龙眼果干品质及益生活性的影响,为高品质龙眼果干工业化节能干燥模式提供理论依据.[方法]以热风干燥、真空冷冻干燥龙眼果干为对照,比较分析热风-真空冷冻联合干燥对脆性龙眼果干水分含量、水分活度、皱缩率、复水比等理化特性和总糖、多糖等营养品质的影响.同时采用GC-MS测定风味物质变化,电量表测定能源消耗量.并选用植物乳杆菌和嗜酸乳杆菌发酵龙眼果干,比较发酵过程中活菌数、总糖、还原糖以及短链脂肪酸的变化,评价热风-真空冷冻联合干燥对龙眼体外益生活性的影响.[结果]热风-真空冷冻联合干燥龙眼果干的水分含量、水分活度和皱缩率显著低于热风干燥,而复水比显著高于热风干燥.在总糖、多糖含量以及挥发性风味物质种类和总量上,热风-真空冷冻联合干燥低于真空冷冻干燥而高于热风干燥.在能源消耗上,热风-真空冷冻联合干燥比真空冷冻干燥节约干燥时间12.16%,节约单位能耗25.40%.在益生活性方面,植物乳杆菌和嗜酸乳杆菌均能通过发酵龙眼干增加活菌数量,利用龙眼干中的总糖产生短链脂肪酸,降低发酵液pH,且益生效果受干燥方式和菌株种类的影响较大.当植物乳杆菌发酵热风-真空冷冻干燥的龙眼果干48 h后,活菌数生长最多可达12.40 lg cfu/mL,高于真空冷冻干燥、热风干燥和新鲜龙眼.嗜酸乳杆菌发酵48 h后,热风-真空冷冻联合干燥活菌数达11.84 lg cfu/mL,与真空冷冻干燥接近,低于热风干燥,但高于新鲜龙眼.[结论]热风-真空冷冻联合干燥结合了热风干燥和真空冷冻干燥两种干燥方式的特点,可以显著缩短干燥时间,节约能耗,提高干燥效率和果干品质.