The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperat...The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained.展开更多
We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with ...We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.展开更多
Multimode photonic quantum memory could enhance the information processing speed in a quantum repeater-based quantum network. A large obstacle that impedes the storage of the spatial multimode in a hot atomic ensemble...Multimode photonic quantum memory could enhance the information processing speed in a quantum repeater-based quantum network. A large obstacle that impedes the storage of the spatial multimode in a hot atomic ensemble is atomic diffusion, which severely disturbs the structure of the retrieved light field. In this paper, we demonstrate that the elegant InceGaussian(eIG) mode possesses the ability to resist such diffusion. Our experimental results show that the overall structure of the eIG modes under different parameters maintains well after microseconds of storage. In contrast, the standard IG modes under the same circumstance are disrupted and become unrecognizable. Our findings could promote the construction of quantum networks based on room-temperature atoms.展开更多
基金the financial supports from the National Natural Science Foundation of China(Grant Nos.51301157 and 51434007)the National High Technology Research and Development Program of China 863 Program(Grant No.2013AA031103)
文摘The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(Nos.11774286,11374238,11574247,11374008,and 11534008)
文摘We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12104358,11774286,and92050103)。
文摘Multimode photonic quantum memory could enhance the information processing speed in a quantum repeater-based quantum network. A large obstacle that impedes the storage of the spatial multimode in a hot atomic ensemble is atomic diffusion, which severely disturbs the structure of the retrieved light field. In this paper, we demonstrate that the elegant InceGaussian(eIG) mode possesses the ability to resist such diffusion. Our experimental results show that the overall structure of the eIG modes under different parameters maintains well after microseconds of storage. In contrast, the standard IG modes under the same circumstance are disrupted and become unrecognizable. Our findings could promote the construction of quantum networks based on room-temperature atoms.