Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the S...As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the South China Sea(SCS).Under the influence of complex geologic evolution,basin-range structures,fault systems and hot springs are well developed here.However,the characteristics of geological structures and the genetic mechanism of these geological phenomena are still unclear.Therefore,we performed ambient noise tomography to obtain 3-D upper crust(0-7.5 km)S-wave velocity structures of the GHMGBA by using 40-day continuous waveform data from 130 seismic stations in the GHMGBA.Our results show that sedimentary basins in the GHMGBA are mainly characterized by low-velocity anomalies.S-wave velocities of sediment formation in basins are about 2.8-3.1 km/s.Rapid changes in velocity appear at the edges of the basins,which correspond to the NE-,NEE-,and NW-trending faults,indicating prominent basin-controlling effects of the faults.The Sanshui Basin(SSB),the largest in the GHMGBA,has a developmental depth of about 4 km,and there is a significant difference in velocity gradient between the east and west sides of the basin,indicating that SSB has experienced east-west asymmetric expansion.Moreover,there are prominent low-velocity anomalies at a depth of about 4.5 km beneath the hot springs at the west of the Zhujiang(Pearl)River estuary(ZRE).We infer that the low-velocity anomalies are fluid reservoirs of the hot springs,which lead to the development of the hot springs on the surface.In addition,the distribution of main cities in the GHMGBA shows a spatial correlation with low-velocity areas at shallow depths(<3 km).The population development trend in the GHMGBA in the past 20 years is also mainly concentrated in the structural province of relatively low-velocity.In combination with the GHMGBA basin structures and drainage distribution characteristics,we suggest that the basic geological environment to some extent affects the habitability of the human settlement and thus determines the distribution and development trend of the main urban context.We believe that the 3-D S-wave velocity structure of the upper crust of the GHMGBA obtained in this study,as well as the deep structural characteristics of the basins and hot springs,will provide support to urban construction planning and geological hazards research of the GHMGBA.展开更多
A comparison of theoretical seismograms under discussion with four teleseismograms recorded by WWSSN of SBA(New Zealand) and SPA (U.S.A.),shows that the crustal thickness beneath South Pole is a double-layered structu...A comparison of theoretical seismograms under discussion with four teleseismograms recorded by WWSSN of SBA(New Zealand) and SPA (U.S.A.),shows that the crustal thickness beneath South Pole is a double-layered structure, about 45 km ; crustal thickness below the Ross Sea Beach,a single structure, is about 24 km ;and at the depth of 350~450 km there exists a low velocity layer. The above results indicate the different tectonic characteristics on both sides of Antarctic Transantarctic Mountains.展开更多
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t...The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.展开更多
Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at stra...Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.展开更多
Three oxide-dispersion-strengthened(ODS)steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y_2O_3(wt%,so as the follows)(14Y),Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y_2O_3(14YAl),and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y_2O_3(...Three oxide-dispersion-strengthened(ODS)steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y_2O_3(wt%,so as the follows)(14Y),Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y_2O_3(14YAl),and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y_2O_3(14YTi)were fabricated by hot pressing.Transmission electron microscopy(TEM)was used to characterize the microstructures and nanoparticles of these ODS steels.According to the TEM results,14Y,14YAl,and 14YTi ODS steels present similar bimodal structures containing both large and small grains.The addition of Al or Ti has no obvious effect on the microstructure of the steels.The spatial and size distribution of the nanoparticles was also analyzed.The results indicate that the average size of nanoparticles in the 14YTi ODS steel is smaller than that in the 14YAl ODS steel.Nanoparticles such as Y_2O_3,Y_3Al_5O_(12) and YAlO_3,and Y_2Ti_2O_7 were identified in the 14Y,14YAl,and 14YTiODS steels,respectively.展开更多
Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important c...Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important carbides precipitated during tempering in steel were calculated, on the basis of the empirical electron theory of solids and molecules and the improved TFD theory. The influence of Mo2 C and V4 C3 on the mechanical properties of HWDS has been analyzed at electron structure level, and the fundamental reason that the characteristic of the PES and the BIES of carbides decides the behavior of them has been revealed.展开更多
In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and ...In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and formation mechanism of the coatings were investigated.The hot corrosion behaviors of DZ125 alloy and the coatings in molten salt environment of 25%K2SO4+75%Na2SO4(mass fraction)at 900°C were studied.Results show that the obtained Al-Ce-Y coatings were mainly composed of Al3Ni2,Al3Ni and Cr7Ni3,with a thickness of about 120μm.After hot corrosion test,DZ125 alloy suffered catastrophic hot corrosion and serious internal oxidation and internal sulfidation arose.Two layers of corrosion products formed on surfaces of DZ125 alloy,including the outer layer consisting of Cr2O3 and NiCr2O4,and the inner layer of Al2O3,Ni3S2 and Ni-base solid solution.After being coated with Al-Ce-Y coating,the hot corrosion resistance of DZ125 alloy is improved notably,due to the formation of a dense scale mainly consisting of Al-rich Al2O3 in the coating layer.展开更多
In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,cr...In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process.展开更多
This study aimed to modify isolated and extracted peanut protein with hot alkali to study the impact of pH,heating temperature,processing time and other alkali liquor conditions on the molecular structure of the peanu...This study aimed to modify isolated and extracted peanut protein with hot alkali to study the impact of pH,heating temperature,processing time and other alkali liquor conditions on the molecular structure of the peanut.Curcumin was loaded in modified peanut protein.The results of the study are as follows:Within the alkaline range of 8<pH<12,the percentage of amino acid residue(AAR)and-turns first increased and then decreased with the increasing pH,and the percentage of AAR reached a maximum 5.21±0.33%when the pH was 11(p<0.01).The percentage of˛-helices andβ-sheets gradually decreased with increasing pH,while that of random coils gradually increased with increasing pH,reaching a maximum 11.24±0.87%when the pH was 11(p<0.05).Within the range of the heating temperature 75℃<T<95℃,the percentage of random coils andβ-sheets gradually increased with increasing heating temperature,while that of-helices and AAR gradually decreased with increasing heating temperature;they remained unchanged when the heating temperature was 90℃,and then decreased to(10.41±1.18%;p<0.01)and(4.02±2.12%;p<0.01),respectively.Within the range of 5 min<t<20 min,the percentage of random coils and AAR gradually increased with increasing heating time,while the percentage ofα-helices decreased from 11.83±1.04%to 10.75±2.34%with increased heating time(p<0.01).The optimum conditions for hot alkali modification of peanut protein as followed:heating temperature of 90℃,heating time of 20 min and a pH of alkali liquor of 11.Under these optimum conditions,the embedding rate of curcumin by the modified protein can reach 88.32±1.29%.展开更多
In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors...In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors of the TiAl alloy with and without Si-Al-Y coatings are compared to illustrate the factors and corresponding mechanism in molten salt environment of 25 wt%K2SO4 and 75 wt%Na2SO4 at 900°C.The obtained Si-Al-Y coating was mainly composed of a TiSi2 outer layer,a(Ti,X)5Si4 and(Ti,X)5Si3(X represents Nb or Cr element)middle layer,a TiAl2 inner layer and a Al-rich inter-diffusion zone.The inter-phase selective corrosion containing corrosion pits extending alongα2 phase from lamellar interfaces in hot corrosion tested TiAl alloy was observed.However,by being coated with Si-Al-Y coating,the hot corrosion performance of TiAl alloy was improved remarkably.展开更多
Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from pla...Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.展开更多
Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production...Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.展开更多
The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the ...The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.展开更多
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro...The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.展开更多
Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect ...Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.展开更多
In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electro...In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.展开更多
Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a pe...Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.展开更多
The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the ...The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.展开更多
Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends a...Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金Supported by the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)+2 种基金the Guangdong Key Project(No.2019BT02H594)the Key Research and Development Plan of Hainan Province(No.ZDYF2020198)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2017DZ0101)。
文摘As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the South China Sea(SCS).Under the influence of complex geologic evolution,basin-range structures,fault systems and hot springs are well developed here.However,the characteristics of geological structures and the genetic mechanism of these geological phenomena are still unclear.Therefore,we performed ambient noise tomography to obtain 3-D upper crust(0-7.5 km)S-wave velocity structures of the GHMGBA by using 40-day continuous waveform data from 130 seismic stations in the GHMGBA.Our results show that sedimentary basins in the GHMGBA are mainly characterized by low-velocity anomalies.S-wave velocities of sediment formation in basins are about 2.8-3.1 km/s.Rapid changes in velocity appear at the edges of the basins,which correspond to the NE-,NEE-,and NW-trending faults,indicating prominent basin-controlling effects of the faults.The Sanshui Basin(SSB),the largest in the GHMGBA,has a developmental depth of about 4 km,and there is a significant difference in velocity gradient between the east and west sides of the basin,indicating that SSB has experienced east-west asymmetric expansion.Moreover,there are prominent low-velocity anomalies at a depth of about 4.5 km beneath the hot springs at the west of the Zhujiang(Pearl)River estuary(ZRE).We infer that the low-velocity anomalies are fluid reservoirs of the hot springs,which lead to the development of the hot springs on the surface.In addition,the distribution of main cities in the GHMGBA shows a spatial correlation with low-velocity areas at shallow depths(<3 km).The population development trend in the GHMGBA in the past 20 years is also mainly concentrated in the structural province of relatively low-velocity.In combination with the GHMGBA basin structures and drainage distribution characteristics,we suggest that the basic geological environment to some extent affects the habitability of the human settlement and thus determines the distribution and development trend of the main urban context.We believe that the 3-D S-wave velocity structure of the upper crust of the GHMGBA obtained in this study,as well as the deep structural characteristics of the basins and hot springs,will provide support to urban construction planning and geological hazards research of the GHMGBA.
文摘A comparison of theoretical seismograms under discussion with four teleseismograms recorded by WWSSN of SBA(New Zealand) and SPA (U.S.A.),shows that the crustal thickness beneath South Pole is a double-layered structure, about 45 km ; crustal thickness below the Ross Sea Beach,a single structure, is about 24 km ;and at the depth of 350~450 km there exists a low velocity layer. The above results indicate the different tectonic characteristics on both sides of Antarctic Transantarctic Mountains.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by Creative Research Group of National Natural Science Foundation of ChinaProject (CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate
文摘The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.
基金Project(2008011045) supported by the Natural Science Foundation of Shanxi Province,China
文摘Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.
基金financially supported by the National Natural Science Foundation of China(Nos.51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Project(No.2015GB119000)
文摘Three oxide-dispersion-strengthened(ODS)steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y_2O_3(wt%,so as the follows)(14Y),Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y_2O_3(14YAl),and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y_2O_3(14YTi)were fabricated by hot pressing.Transmission electron microscopy(TEM)was used to characterize the microstructures and nanoparticles of these ODS steels.According to the TEM results,14Y,14YAl,and 14YTi ODS steels present similar bimodal structures containing both large and small grains.The addition of Al or Ti has no obvious effect on the microstructure of the steels.The spatial and size distribution of the nanoparticles was also analyzed.The results indicate that the average size of nanoparticles in the 14YTi ODS steel is smaller than that in the 14YAl ODS steel.Nanoparticles such as Y_2O_3,Y_3Al_5O_(12) and YAlO_3,and Y_2Ti_2O_7 were identified in the 14Y,14YAl,and 14YTiODS steels,respectively.
基金ItemSponsored by National Natural Science Foundation of China (50271030) Provincial Natural Science Foundation ofLiaoning Province of China (972072)
文摘Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important carbides precipitated during tempering in steel were calculated, on the basis of the empirical electron theory of solids and molecules and the improved TFD theory. The influence of Mo2 C and V4 C3 on the mechanical properties of HWDS has been analyzed at electron structure level, and the fundamental reason that the characteristic of the PES and the BIES of carbides decides the behavior of them has been revealed.
基金Project(51961003)supported by the National Natural Science Foundation of ChinaProject(NGY2018-148)supported by the Science and Technology Research of Ningxia Colleges,ChinaProject(NZ16083)supported by Key Program of Natural Science Foundation of Ningxia,China
文摘In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and formation mechanism of the coatings were investigated.The hot corrosion behaviors of DZ125 alloy and the coatings in molten salt environment of 25%K2SO4+75%Na2SO4(mass fraction)at 900°C were studied.Results show that the obtained Al-Ce-Y coatings were mainly composed of Al3Ni2,Al3Ni and Cr7Ni3,with a thickness of about 120μm.After hot corrosion test,DZ125 alloy suffered catastrophic hot corrosion and serious internal oxidation and internal sulfidation arose.Two layers of corrosion products formed on surfaces of DZ125 alloy,including the outer layer consisting of Cr2O3 and NiCr2O4,and the inner layer of Al2O3,Ni3S2 and Ni-base solid solution.After being coated with Al-Ce-Y coating,the hot corrosion resistance of DZ125 alloy is improved notably,due to the formation of a dense scale mainly consisting of Al-rich Al2O3 in the coating layer.
基金the financial support to this research from the open fund of state key laboratory for modification of chemical fibers and polymer materials (LK1601)projects of education department of Shaanxi provincial government (15JF012)National Natural Science Foundation of China (51402180)
文摘In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process.
基金This work was financially supported by The foundation for young scientists of hubei province(grant number 610112246)the foundation for Doctoral startup project of Hubei University of Technology(grant number 337/338).
文摘This study aimed to modify isolated and extracted peanut protein with hot alkali to study the impact of pH,heating temperature,processing time and other alkali liquor conditions on the molecular structure of the peanut.Curcumin was loaded in modified peanut protein.The results of the study are as follows:Within the alkaline range of 8<pH<12,the percentage of amino acid residue(AAR)and-turns first increased and then decreased with the increasing pH,and the percentage of AAR reached a maximum 5.21±0.33%when the pH was 11(p<0.01).The percentage of˛-helices andβ-sheets gradually decreased with increasing pH,while that of random coils gradually increased with increasing pH,reaching a maximum 11.24±0.87%when the pH was 11(p<0.05).Within the range of the heating temperature 75℃<T<95℃,the percentage of random coils andβ-sheets gradually increased with increasing heating temperature,while that of-helices and AAR gradually decreased with increasing heating temperature;they remained unchanged when the heating temperature was 90℃,and then decreased to(10.41±1.18%;p<0.01)and(4.02±2.12%;p<0.01),respectively.Within the range of 5 min<t<20 min,the percentage of random coils and AAR gradually increased with increasing heating time,while the percentage ofα-helices decreased from 11.83±1.04%to 10.75±2.34%with increased heating time(p<0.01).The optimum conditions for hot alkali modification of peanut protein as followed:heating temperature of 90℃,heating time of 20 min and a pH of alkali liquor of 11.Under these optimum conditions,the embedding rate of curcumin by the modified protein can reach 88.32±1.29%.
基金Project(2020AAC02025)supported by the Natural Science Foundation of Ningxia Province,ChinaProject(51961003)supported by the National Natural Science Foundation of China+1 种基金Project(TJGC2019040)supported by the Ningxia Youth Talents Supporting Program,ChinaProject(2020xyzc103)supported by the Foundation of North Minzu University,China。
文摘In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors of the TiAl alloy with and without Si-Al-Y coatings are compared to illustrate the factors and corresponding mechanism in molten salt environment of 25 wt%K2SO4 and 75 wt%Na2SO4 at 900°C.The obtained Si-Al-Y coating was mainly composed of a TiSi2 outer layer,a(Ti,X)5Si4 and(Ti,X)5Si3(X represents Nb or Cr element)middle layer,a TiAl2 inner layer and a Al-rich inter-diffusion zone.The inter-phase selective corrosion containing corrosion pits extending alongα2 phase from lamellar interfaces in hot corrosion tested TiAl alloy was observed.However,by being coated with Si-Al-Y coating,the hot corrosion performance of TiAl alloy was improved remarkably.
基金financial supports from the National Natural Science Foundation of China(Nos.U1502272,51901204)the Precious Metal Materials Genome Engineering in Yunnan Province,China(Nos.2019ZE001,202002AB080001)。
文摘Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.
基金financially supported by the National Natural Science Foundation of China(Granted No.U1760204,51504048)the National Key Research Program of China(Granted No.2017YFB0701800)
文摘Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.
文摘The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.
文摘The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.
基金Supported by the National Defense Preresearch Fund Program(No.99J8.1.1.DZD132)
文摘Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.
文摘In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.
文摘Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.
基金This work was financially supported by the National Natural Science Foundation of China (No.50465003).
文摘The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.
基金supported by the National Natural Science Foundation of China,No.81471308(to JL)the Stem Cell Clinical Research Project in China,No.CMR-20161129-1003(to JL)the Innovation Technology Funding of Dalian in China,No.2018J11CY025(to JL)
文摘Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.