期刊文献+
共找到546篇文章
< 1 2 28 >
每页显示 20 50 100
Fabrication of Graphene/Cu Composite by Chemical Vapor Deposition and Effects of Graphene Layers on Resultant Electrical Conductivity
1
作者 Xinyue Liu Yaling Huang +2 位作者 Yuyao Li Jie Liu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期16-25,共10页
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro... Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil. 展开更多
关键词 chemical vapor deposition(cvd) Gr/Cu Gr/Cu/Gr graphene layers graphene volume fraction electrical conductivity
下载PDF
Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions 被引量:2
2
作者 SHEN Bin SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期658-664,共7页
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi... The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process. 展开更多
关键词 hot filament chemical vapor deposition(HFcvd) diamond films friction behavior water lubricating
下载PDF
Characterization of atomic-layer MoS_2 synthesized using a hot filament chemical vapor deposition method 被引量:1
3
作者 彭英姿 宋扬 +3 位作者 解晓强 李源 钱正洪 白茹 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期423-428,共6页
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ... Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions. 展开更多
关键词 atomic-layer MoS2 hot filament chemical vapor deposition high-resolution transition electron microscopy(HRTEM) x-ray photoelectron spectroscopy(XPS)
下载PDF
FABRICATION OF DIAMOND TUBES IN BIAS-ENHANCED HOT-FILAMENT CHEMICAL VAPOR DEPOSITION SYSTEM 被引量:1
4
作者 CHEN Ming MA Yuping XIANG Daohui SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期24-26,共3页
Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra... Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal. 展开更多
关键词 Diamond tube hot-filament chemical vapor deposition Fabrication High quality
下载PDF
<100> Textured Diamond Film on Silicon Grown by Hot Filament Chemical Vapor Deposition
5
作者 Xuanxiong ZHANG Tiansheng SHI and Xikang ZHANG (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy,Chinese Academy of Sciences, Shanghai, 200050, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期426-428,共3页
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic... The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained 展开更多
关键词 Textured Diamond Film on Silicon Grown by hot filament chemical vapor deposition OO
下载PDF
Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors
6
作者 XueguiQI ZeshaoCHEN GuanzhongWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期235-239,共5页
In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless number... In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination. 展开更多
关键词 hot-filament chemical vapor deposition (HFcvd) Diamond film Atomic hydrogen Catalytic dissociation Transport
下载PDF
Synthesis and Growth Mechanism of Carbon Filaments by Chemical Vapor Deposition without Catalyst
7
作者 Shuhe Liu Feng Li Shuo Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期259-263,共5页
Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon fila... Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles. 展开更多
关键词 Carbon filaments Pyrolytic carbon SYNTHESIS chemical vapor deposition Mechanical property
下载PDF
Study of filament performance in heat transfer and hydrogen dissociation in diamond chemical vapor deposition
8
作者 Qi Xuegui Chen Zeshao Xu Hong 《金刚石与磨料磨具工程》 CAS 北大核心 2006年第1期11-17,共7页
Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigat... Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigated. Power consumption by the filament in vacuum, helium and 2% CH4/H2 was experimentally determined in temperature range 1300℃-2200℃. Filament heat transfer mechanism in C-H reactive environment was calculated and analyzed. The result shows that due to surface carburization and slight carbon deposition, radiation in stead of hydrogen dissociation, becomes the largest contributor to power consumption. Filament-surface dissociation of H2 was observed at temperatures below 1873K, demonstrating the feasibility of diamond growth at low filament temperatures. The effective activation energies of hydrogen dissociation on several clean refractory flaments were derived from power consumption data in literatures. They are all lower than that of thermal dissociation of hydrogen revealing the nature of catalytic dissociation of hydrogen on filament surface. Observation of substrate temperature suggested a weaker role of atomic hydrogen recombination in heating substrates in C-H environment than in pure hydrogen. 展开更多
关键词 氢脆 金刚石薄膜 cvd HFcvd 热转变 热丝化学气相沉积
下载PDF
GROWTH MECHANISM OF TiC WHISKERS PREMRED BY A MODIFIED CHEMICAL VAPOR DEPOSITION METHOD 被引量:7
9
作者 J.S. Pan and Y. W. Yuan (Department of Materials Science and Engineering, Tsinghua Universityt Beijing 100084, China)(Department of Materials Science and Engineering, Tsinghua Universityt Beijing 100084, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第3期278-282,共5页
High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciabl... High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciable effect on the whisker growth.The whisker orientations and morphology are determined by X-my diffraction (XRD),scanning electron micmpmph (SEM) and transmission electron microgmph (TEM).In addition to the spherical tips, spiral growth microsteps and obvious terraces are observed at the tips and side faces of whiskers in the present eoperiment. The whiskers grow mostly along (100) direction. The whisker growth mechanism is discussed in detail. 展开更多
关键词 TIC WHISKER chemical vapor deposition (cvd) growth mechanism
下载PDF
Science Letters:Development of supported boron-doping TiO_2 catalysts by chemical vapor deposition 被引量:4
10
作者 Xing-wang ZHANG Le-cheng LEI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期109-112,共4页
In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. B... In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst. 展开更多
关键词 环境污染 防治方法 TiO2 光催化作用
下载PDF
Fibrous TiO_2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption,hydrolysis and calcinations 被引量:2
11
作者 Hui-na YANG Li-fen LIU +1 位作者 Feng-lin YANG Jimmy C. YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期981-987,共7页
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD(chemical vapor deposition under atmospheric pressure) reactor at ≤200 °C. Activated carbon fibers(AC... TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD(chemical vapor deposition under atmospheric pressure) reactor at ≤200 °C. Activated carbon fibers(ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron microscopy(SEM) ,transmission electron microscopy(TEM) ,Brunauer,Emmett and Teller(BET) and X-ray diffraction(XRD) analysis. The pores within TiO2 fibers included micro-range and meso-range,e.g.,7 nm,and the specific surface areas for TiO2 fibers were 141 m2/g and 148 m2/g for samples deposited at 100 °C and 200 °C(using ACF1700 as template) ,respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds. 展开更多
关键词 化学汽相沉积 多孔渗水材料 活性碳纤维 吸附
下载PDF
Synthesis of flower-like WS_(2) by chemical vapor deposition
12
作者 丁金姿 任卫 +5 位作者 冯爱玲 王垚 乔浩森 贾煜欣 马双雄 张博宇 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期523-528,共6页
Flower-like tungsten disulfide(WS_(2))with a diameter of 5-10μm is prepared by chemical vapor deposition(CVD).Scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),Raman spectroscopy,and ultraviolet-v... Flower-like tungsten disulfide(WS_(2))with a diameter of 5-10μm is prepared by chemical vapor deposition(CVD).Scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),Raman spectroscopy,and ultraviolet-visible(UV-vis)spectroscopy are used to characterize its morphological and optical properties,and its growth mechanism is discussed.The key factors for the formation of flower-like WS_(2)are determined.Firstly,the cooling process causes the generation of nucleation dislocations,and then the"leaf"growth of flower-like WS_(2)is achieved by increasing the temperature. 展开更多
关键词 flower-like WS_(2) chemical vapor deposition(cvd) optical property growth mechanism
下载PDF
Monolayer MoS_(2)of high mobility grown on SiO_(2)substrate by two-step chemical vapor deposition
13
作者 马佳俊 吴康 +5 位作者 王振宇 马瑞松 鲍丽宏 戴庆 任金东 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期183-189,共7页
We report a novel two-step ambient pressure chemical vapor deposition(CVD)pathway to grow high-quality Mo S_(2)monolayer on the Si O_(2)substrate with large crystal size up to 110μm.The large specific surface area of... We report a novel two-step ambient pressure chemical vapor deposition(CVD)pathway to grow high-quality Mo S_(2)monolayer on the Si O_(2)substrate with large crystal size up to 110μm.The large specific surface area of the pre-synthesized Mo O_(3)flakes on the mica substrate compared to Mo O_(3)powder could dramatically reduce the consumption of the Mo source.The electronic information inferred from the four-probe scanning tunneling microscope(4P-STM)image explains the threshold voltage variations and the n-type behavior observed in the two-terminal transport measurements.Furthermore,the direct van der Pauw transport also confirms its relatively high carrier mobility.Our study provides a reliable method to synthesize high-quality Mo S_(2)monolayer,which is confirmed by the direct 4P-STM measurement results.Such methodology is a key step toward the large-scale growth of transition metal dichalcogenides(TMDs)on the Si O_(2)substrate and is essential to further development of the TMDs-related integrated devices. 展开更多
关键词 chemical vapor deposition(cvd) scanning tunneling microscope(STM) MoS_(2) transport
下载PDF
Influence of Nickel Catalyst Film Thickness and Cooling Condition for Synthesis of Monolayer Graphene by Thermal Chemical Vapor Deposition at 800 ℃
14
作者 Kazunori Ichikawa Hiroshi Akamatsu +2 位作者 Yoshiyuki Suda Yoshiyuki Nonoguchi Yukiharu Uraoka 《材料科学与工程(中英文B版)》 2015年第9期341-346,共6页
关键词 薄膜厚度 镍催化剂 冷却条件 石墨 单层 蒸汽沉积 化学气相沉积 合成方法
下载PDF
Selective growth of diamond by hot filament CVD using patterned carbon film as mask 被引量:1
15
作者 HE Zhoutong YANG Shumin +2 位作者 LI Qintao ZHU Dezhang GONG Jinlong 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第2期83-87,共5页
Selected-area deposition (SAD) of diamond films was achieved on silicon substrates with carbon film mask by hot filament chemical vapor deposition.Needle tip scraped lines were used to grow diamond films.Scanning elec... Selected-area deposition (SAD) of diamond films was achieved on silicon substrates with carbon film mask by hot filament chemical vapor deposition.Needle tip scraped lines were used to grow diamond films.Scanning electron microscope (SEM) investigation demonstrates that highly selective and sharp edged diamond films were produced.The results also demonstrate that the proper substrate temperature is very important for diamond selective growth in this deposition process.Since the enhancement of diamond growth was not observed on the needle tip scraped area of Si wafer with diamond powder scratching,the selective growth was considered to be closely correlated to silicon carbide formed during carbon film deposition and the residual carbon in the scraped area. 展开更多
关键词 金刚石薄膜 选择性沉积物 灯丝 碳薄膜
下载PDF
Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition 被引量:1
16
作者 HU QianKu WU QingHua +4 位作者 SUN Guang LUO XiaoGuang XU Bo YU DongLi HE JuLong 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第9期1464-1469,共6页
Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying t... Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon. 展开更多
关键词 carbon BORON hot filament chemical vapor deposition SUBSTITUTION oxidation behavior
原文传递
Friction and Wear Performances of Hot Filament Chemical Vapor Deposition Multilayer Diamond Films Coated on Silicon Carbide Under Water Lubrication 被引量:1
17
作者 陈乃超 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期237-242,共6页
Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond f... Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond films are deposited on silicon carbide by hot filament CVD (HFCVD) method. The different micrometric diamond grains are produced by adjusting deposition parameters. The as-deposited multilayer diamond films are characterized by scanning electron microscope (SEM) and white-light interferometry. The friction tests performed on a reciprocating ball-on-plate tribometer suggest that silicon carbide presents the friction coefficient of 0.400 for dry sliding against silicon nitride (Si3N4) ceramic counterface. With the water lubrication, the corresponding friction coefficients of silicon carbide and as-deposited multilayer diamond films further reduce to 0.193 and 0.051, respectively. The worn surfaces indicate that multilayer diamond films exhibit considerably high wear resistance. 展开更多
关键词 multilayer diamond films chemical vapor deposition (cvd) hot filament cvd (HFcvd)
原文传递
Friction and Cutting Properties of Hot-Filament Chemical Vapor Deposition Micro-and Fine-grained Diamond Coated Silicon Nitride Inserts 被引量:4
18
作者 杨国栋 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期519-525,共7页
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper... The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one. 展开更多
关键词 silicon nitride hot-filament chemical vapor deposition(HFcvd) friction and wear glass fiber reinforced plastics(GFRP)
原文传递
Simulation of Temperature Distribution in Hot Filament Chemical Vapor Deposition Diamond Films Growth on Si C Seals
19
作者 刘建锦 王亮 +2 位作者 张建国 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期541-547,共7页
In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence ... In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence of filament diameter, filament separation and rotational speed of the substrates is considered. Firstly,the simulation model is established by simplifying operating conditions to simulate the temperature and gas velocity distributions. Thereafter, the deposition parameters are optimized as 0.6 mm filament diameter, 18 mm filament separation and 5 r/min rotational speed to get the uniform temperature distribution. Under the influence of the rotational speed, the difference between temperature gradients along the directions perpendicular to the filament and parallel to the filament becomes narrow, it is consistent with the actual condition, and the maximum temperature difference on the substrates decreases to 7.4?C. Furthermore, the effect of the rotational speed on the gas velocity distribution is studied. Finally, diamond films are deposited on the end surfaces of Si C seals with the optimized deposition parameters. The characterizations by scanning electron microscopy(SEM) and Raman spectroscopy exhibit a layer of homogeneous diamond films with fine-faceted crystals and uniform thickness. The results validate the simulation model. 展开更多
关键词 finite volume method substrate temperature hot filament chemical vapor deposition(HFcvd) rotational speed velocity field distribution
原文传递
Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement 被引量:3
20
作者 Ke Wu Zhe Li +7 位作者 Jibo Tang Xianglong Lv Hailing Wang Ruichun Luo Pan Liu Lihua Qian Shunping Zhang Songliu Yuan 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4123-4132,共10页
Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radi... Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radiatively. However, the implantation of defects by external stimulation, such as uniaxial tension and irradiation, tends to introduce local damages or structural non-homogeneity, which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices. In this paper, we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition, without sacrificing their luminescence characteristics. The density of the defect is controlled directly by the concentration of hydrogen. For an appropriate hydrogen flux, the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions, compared with those samples with nearly perfect crystalline structure. The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest. However, the B exciton, exhibits a monotonic decline as the defect density increases. The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases. All the evidence indicates that the generated defects are in the form of sulfur vacancies. This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications. 展开更多
关键词 chemical vapor deposition(cvd MoS2 hydrogen sulfur vacancy defect-bounded exciton photoluminescenceenhancement Raman shifts
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部