期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions 被引量:2
1
作者 SHEN Bin SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期658-664,共7页
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi... The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process. 展开更多
关键词 hot filament chemical vapor deposition(hfcvd diamond films friction behavior water lubricating
下载PDF
Characterization of atomic-layer MoS_2 synthesized using a hot filament chemical vapor deposition method 被引量:1
2
作者 彭英姿 宋扬 +3 位作者 解晓强 李源 钱正洪 白茹 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期423-428,共6页
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ... Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions. 展开更多
关键词 atomic-layer MoS2 hot filament chemical vapor deposition high-resolution transition electron microscopy(HRTEM) x-ray photoelectron spectroscopy(XPS)
下载PDF
FABRICATION OF DIAMOND TUBES IN BIAS-ENHANCED HOT-FILAMENT CHEMICAL VAPOR DEPOSITION SYSTEM 被引量:1
3
作者 CHEN Ming MA Yuping XIANG Daohui SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期24-26,共3页
Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra... Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal. 展开更多
关键词 Diamond tube hot-filament chemical vapor deposition Fabrication High quality
下载PDF
Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors
4
作者 XueguiQI ZeshaoCHEN GuanzhongWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期235-239,共5页
In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless number... In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination. 展开更多
关键词 hot-filament chemical vapor deposition (hfcvd) Diamond film Atomic hydrogen Catalytic dissociation Transport
下载PDF
<100> Textured Diamond Film on Silicon Grown by Hot Filament Chemical Vapor Deposition
5
作者 Xuanxiong ZHANG Tiansheng SHI and Xikang ZHANG (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy,Chinese Academy of Sciences, Shanghai, 200050, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期426-428,共3页
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic... The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained 展开更多
关键词 Textured Diamond Film on Silicon Grown by hot filament chemical vapor deposition OO
下载PDF
Synthesis and Growth Mechanism of Carbon Filaments by Chemical Vapor Deposition without Catalyst
6
作者 Shuhe Liu Feng Li Shuo Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期259-263,共5页
Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon fila... Carbon filaments with diameter from several to hundreds deposition of methane without catalyst. The morphology micrometers were synthesized by chemical vapor microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles. 展开更多
关键词 Carbon filaments Pyrolytic carbon SYNTHESIS chemical vapor deposition Mechanical property
下载PDF
Study of filament performance in heat transfer and hydrogen dissociation in diamond chemical vapor deposition
7
作者 Qi Xuegui Chen Zeshao Xu Hong 《金刚石与磨料磨具工程》 CAS 北大核心 2006年第1期11-17,共7页
Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigat... Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigated. Power consumption by the filament in vacuum, helium and 2% CH4/H2 was experimentally determined in temperature range 1300℃-2200℃. Filament heat transfer mechanism in C-H reactive environment was calculated and analyzed. The result shows that due to surface carburization and slight carbon deposition, radiation in stead of hydrogen dissociation, becomes the largest contributor to power consumption. Filament-surface dissociation of H2 was observed at temperatures below 1873K, demonstrating the feasibility of diamond growth at low filament temperatures. The effective activation energies of hydrogen dissociation on several clean refractory flaments were derived from power consumption data in literatures. They are all lower than that of thermal dissociation of hydrogen revealing the nature of catalytic dissociation of hydrogen on filament surface. Observation of substrate temperature suggested a weaker role of atomic hydrogen recombination in heating substrates in C-H environment than in pure hydrogen. 展开更多
关键词 氢脆 金刚石薄膜 CVD hfcvd 热转变 热丝化学气相沉积
下载PDF
Si-doped diamond films prepared by chemical vapour deposition 被引量:1
8
作者 崔雨潇 张建国 +1 位作者 孙方宏 张志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2962-2970,共9页
The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into a... The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%. 展开更多
关键词 Si doping hot filament chemical vapor deposition (hfcvd diamond films
下载PDF
Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD 被引量:4
9
作者 张建国 王新昶 +1 位作者 沈彬 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3181-3188,共8页
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio... The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films. 展开更多
关键词 hot filament chemical vapor deposition(hfcvd diamond films WC-Co substrates deposition parameters
下载PDF
Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates 被引量:3
10
作者 王新昶 林子超 +1 位作者 沈彬 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期791-802,共12页
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c... Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min. 展开更多
关键词 hot filament chemical vapor deposition diamond film inner hole surface Taguchi method deposition parameter optimization
下载PDF
GENETIC OPTIMIZATION OF HOT FILAMENT PARAMETERS IN HFCVD SYSTEM
11
作者 宋胜利 左敦稳 +3 位作者 王珉 相炳坤 卢文壮 黎向锋 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期42-46,共5页
In HFCVD system the substrate temperature is a key factor which deeply affects the quality of diamond films. Th e magnitude and the variation of the substrate temperature must be limited in a suitable range to depo... In HFCVD system the substrate temperature is a key factor which deeply affects the quality of diamond films. Th e magnitude and the variation of the substrate temperature must be limited in a suitable range to deposit diamond films of uniform thickness over large areas. In this paper, the hot filament parameters are investigated on the basi s of GAs to realize a good substrate temperature profile. Computer simulations d emonstrate that on parameters optimized by GAs a uniform substrate temperatur e field can be formed over a relatively large circle area with R s=10 cm. 展开更多
关键词 hot filament chemical vapor deposition temperature field genetic algorithms optimization diamond fi lm
下载PDF
Preparation, characterization and electrochemical properties of boron-doped diamond films on Nb substrates
12
作者 余志明 王健 +3 位作者 魏秋平 孟令聪 郝诗梦 龙芬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1334-1341,共8页
A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical... A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes. 展开更多
关键词 diamond film hot filament chemical vapor deposition (hfcvd boron doping electrochemical behavior niobium substrate electrode
下载PDF
Friction and Cutting Properties of Hot-Filament Chemical Vapor Deposition Micro-and Fine-grained Diamond Coated Silicon Nitride Inserts 被引量:4
13
作者 杨国栋 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期519-525,共7页
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper... The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one. 展开更多
关键词 silicon nitride hot-filament chemical vapor deposition(hfcvd) friction and wear glass fiber reinforced plastics(GFRP)
原文传递
Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition 被引量:1
14
作者 HU QianKu WU QingHua +4 位作者 SUN Guang LUO XiaoGuang XU Bo YU DongLi HE JuLong 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第9期1464-1469,共6页
Boron-substituted carbon powder, B x C1?x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1?x samples can be controlled by varyi... Boron-substituted carbon powder, B x C1?x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1?x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10–20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize approximately at 620°C and has a higher oxidation resistance than carbon. 展开更多
关键词 carbon BORON hot filament chemical vapor deposition SUBSTITUTION oxidation behavior
原文传递
Friction and Wear Performances of Hot Filament Chemical Vapor Deposition Multilayer Diamond Films Coated on Silicon Carbide Under Water Lubrication 被引量:1
15
作者 陈乃超 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期237-242,共6页
Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond f... Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond films are deposited on silicon carbide by hot filament CVD (HFCVD) method. The different micrometric diamond grains are produced by adjusting deposition parameters. The as-deposited multilayer diamond films are characterized by scanning electron microscope (SEM) and white-light interferometry. The friction tests performed on a reciprocating ball-on-plate tribometer suggest that silicon carbide presents the friction coefficient of 0.400 for dry sliding against silicon nitride (Si3N4) ceramic counterface. With the water lubrication, the corresponding friction coefficients of silicon carbide and as-deposited multilayer diamond films further reduce to 0.193 and 0.051, respectively. The worn surfaces indicate that multilayer diamond films exhibit considerably high wear resistance. 展开更多
关键词 multilayer diamond films chemical vapor deposition (CVD) hot filament CVD (hfcvd)
原文传递
Simulation of Temperature Distribution in Hot Filament Chemical Vapor Deposition Diamond Films Growth on Si C Seals
16
作者 刘建锦 王亮 +2 位作者 张建国 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期541-547,共7页
In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence ... In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence of filament diameter, filament separation and rotational speed of the substrates is considered. Firstly,the simulation model is established by simplifying operating conditions to simulate the temperature and gas velocity distributions. Thereafter, the deposition parameters are optimized as 0.6 mm filament diameter, 18 mm filament separation and 5 r/min rotational speed to get the uniform temperature distribution. Under the influence of the rotational speed, the difference between temperature gradients along the directions perpendicular to the filament and parallel to the filament becomes narrow, it is consistent with the actual condition, and the maximum temperature difference on the substrates decreases to 7.4?C. Furthermore, the effect of the rotational speed on the gas velocity distribution is studied. Finally, diamond films are deposited on the end surfaces of Si C seals with the optimized deposition parameters. The characterizations by scanning electron microscopy(SEM) and Raman spectroscopy exhibit a layer of homogeneous diamond films with fine-faceted crystals and uniform thickness. The results validate the simulation model. 展开更多
关键词 finite volume method substrate temperature hot filament chemical vapor deposition(hfcvd) rotational speed velocity field distribution
原文传递
Amorphous SiO_2 interlayers for deposition of adherent diamond films onto WC-Co inserts 被引量:1
17
作者 崔雨潇 赵天奇 +1 位作者 孙方宏 沈彬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3012-3022,共11页
Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds for... Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films. 展开更多
关键词 hot filament chemical vapor deposition(hfcvd diamond film WC-Co substrate INTERLAYER ADHESION
下载PDF
Effect of deposition temperature on properties of boron-doped diamond films on tungsten carbide substrate 被引量:9
18
作者 Bin SHEN Su-lin CHEN Fang-hong SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期729-738,共10页
Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d... Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate. 展开更多
关键词 hot filament chemical vapor deposition diamond film boron doping substrate temperature tungsten carbide
下载PDF
Preparation of Large-Scale Double-Side BDD Electrodes and Their Electrochemical Performances 被引量:1
19
作者 吴海兵 徐锋 +3 位作者 刘召志 周春 卢文壮 左敦稳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期674-680,共7页
Boron doped diamond(BDD)performs well in electrochemical oxidation for organic pollutants thanks to its wide electrochemical window and superior chemical stability.We presented a method to obtain well-adherent large-s... Boron doped diamond(BDD)performs well in electrochemical oxidation for organic pollutants thanks to its wide electrochemical window and superior chemical stability.We presented a method to obtain well-adherent large-scale BDD/Nb electrode by the modified hot filament chemical vapor deposition system(HFCVD).SiC particles were sand blasted to enhance the adhesion of BDD coating.The BDD coating was then deposited on both sides of Nb which was placed vertically and closely with filament grids on both sides.The BDD/Nb electrodes had no deformation because the thermal deformations of the BDD films on both sides of the Nb substrate conteracted each other during cooling process after deposition.The surface morphology and purity of the BDD/Nb electrode were analyzed by Raman and scanning elestron microscope(SEM)techniques.Scratch test was used to investigate the adhesion of BDD films.The electrochemical performances were measured by cyclic voltammetry test.The BDD electrode at the B/C ratio of 2 000×10^(-6) held a higher oxygen evolution potential thanks to its high sp3 carbon content.Accelerated life test illustrated that the sandblasting pretreatment obviously enhanced the adhesion of BDD coating which resulted in a longer service duration than the un-sandblasted one. 展开更多
关键词 hot filament chemical vapor deposition(CVD) boron doped diamond large-scale double side elec-trode electrochemical performances
下载PDF
Effects of Hot Wire Temperature on Properties of GeSi:H Films with High Hydrogen Dilution by Hot-Wire Chemical Vapor Deposition
20
作者 TAI Xin LI Xingbing +3 位作者 ZHEN Huang SHEN Honglie LI Yufang HUANG Haibin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第5期405-408,共4页
GeSi:H films are prepared by hot-wire chemical vapor deposition(CVD) with high hydrogen dilution, DH=98%. Effects of hot wire temperature(Tw) on deposition rate, structural properties and bandgap of GeSi:H films are s... GeSi:H films are prepared by hot-wire chemical vapor deposition(CVD) with high hydrogen dilution, DH=98%. Effects of hot wire temperature(Tw) on deposition rate, structural properties and bandgap of GeSi:H films are studied with surface profilemeter, Raman spectroscopy, Fourier transformed infrared spectroscopy, and UV-VIS-NIR spectrophotometer. It is found that the deposition rate(Rd) goes up with increasing of Tw, but increasing rate of Rd declines when Tw≥1 550 ℃. High Tw is beneficial to the formation of Ge-Si, but it has little effect on relative contents of the hydrogen bonds(Ge-H, Si-H, etc.) in the films. In the Tw range of 1 400-1 850 ℃, the maximum bandgap of the GeSi:H films is 1.39 eV at Tw =1 450 ℃ and the band gap decreases with Tw increasing when Tw≥1 450 ℃. 展开更多
关键词 GeSi:H FILMS hot-WIRE chemical vapor deposition(CVD) deposition rate structural properties band gap hot wire TEMPERATURE
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部