期刊文献+
共找到1,884篇文章
< 1 2 95 >
每页显示 20 50 100
Forming defects in aluminum alloy hot stamping of side-door impact beam 被引量:12
1
作者 周靖 王宝雨 +2 位作者 林建国 傅垒 马闻宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3611-3620,共10页
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive... The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s. 展开更多
关键词 aluminum alloy hot stamping forming defects numerical simulation blank holder force
下载PDF
Formability of aluminum-silicon coated boron steel in hot stamping process 被引量:5
2
作者 桂中祥 梁卫抗 张宜生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1750-1757,共8页
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa... Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization. 展开更多
关键词 hot stamping boron steel OXIDATION Al-Si coating CRACK formABILITY
下载PDF
Study of microstructure evolution of magnesium alloy cylindrical part with longitudinal inner ribs during hot flow forming by coupling ANN-modified CA and FEA
3
作者 Jinchuan Long Gangfeng Xiao +1 位作者 Qinxiang Xia Xinyun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3229-3244,共16页
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How... Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results. 展开更多
关键词 Magnesium alloy cylindrical part with longitudinal inner ribs hot flow forming Microstructure evolution Artificial neural network Cellular automaton Finite element
下载PDF
Process parameters optimization of Ti-6Al-4V alloy sheet during hot stretch-creep forming 被引量:3
4
作者 肖军杰 李东升 +4 位作者 李小强 丁盼 赵凯 黄烜昭 续明进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期420-428,共9页
Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,... Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally. 展开更多
关键词 Ti-6Al-4V alloy hot stretch-creep forming SPRINGBACK orthogonal experiment OPTIMIZATION
下载PDF
Discrete element and finite element coupling simulation and experiment of hot granule medium pressure forming 被引量:3
5
作者 董国疆 赵长财 +1 位作者 押媛媛 赵建培 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4089-4101,共13页
The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule med... The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum. 展开更多
关键词 granule medium aluminum alloy sheet hot forming finite element discrete element
下载PDF
Application of new generation low-strength hot stamping steel to improve the crash performance of BIW
6
作者 LUO Aihui WU Yanjun CHEN Zikai 《Baosteel Technical Research》 CAS 2023年第3期9-17,共9页
With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.C... With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW. 展开更多
关键词 hot stamping low-strength crash performance
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
7
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Hot Granules Medium Pressure Forming Process of AA7075 Conical Parts 被引量:16
8
作者 DONG Guojiang ZHAO Changcai +1 位作者 PENG Yaxin LI Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期580-591,共12页
High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing ... High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d0 is 0.57, is formed in one process at 250℃. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy. 展开更多
关键词 granules medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
Springback analysis of 6016 aluminum alloy sheet in hot V-shape stamping 被引量:11
9
作者 MA Wei-ping WANG Bao-yu +2 位作者 XIAO Wen-chao YANG Xiao-ming KANG Yi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期524-535,共12页
Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to ... Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon. 展开更多
关键词 SPRINGBACK hot stamping 6016 aluminum alloy V-shape stamping
下载PDF
Influences of hot stamping parameters on mechanical properties and microstructure of 30MnB5 and 22MnB5 quenched in flat die 被引量:11
10
作者 MU Yan-hong WANG Bao-yu +2 位作者 ZHOU Jing HUANG Xu LI Jun-ling 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期736-746,共11页
The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 a... The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate. 展开更多
关键词 high strength boron steel mechanical properties MICROSTRUCTURE hot stamping parameter
下载PDF
Influence of process parameters on properties of AA6082 in hot forming process 被引量:10
11
作者 Wen-yu MA Bao-yu WANG +1 位作者 Jian-guo LIN Xue-feng TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2454-2463,共10页
The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precip... The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions. 展开更多
关键词 aluminium alloy AA6082 mechanical properties strengthening model hot forming
下载PDF
Medium-Mn steels for hot forming application in the automotive industry 被引量:8
12
作者 Shuo-shuo Li Hai-wen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期741-753,共13页
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul... Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization. 展开更多
关键词 medium-Mn transformation-induced plasticity steel hot forming mechanical properties retained austenite BAKING
下载PDF
Effect of solution treatment time on plasticity and ductile fracture of 7075 aluminum alloy sheet in hot stamping process 被引量:7
13
作者 Hui-cheng GENG Yi-lin WANG +2 位作者 Bin ZHU Zi-jian WANG Yi-sheng ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3516-3533,共18页
The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the ho... The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size. 展开更多
关键词 7075 aluminum alloy hot stamping solution treatment time ANISOTROPY ductile fracture
下载PDF
Springback prediction of TC4 titanium alloy V-bending under hot stamping condition 被引量:5
14
作者 YANG Xiao-ming DANG Li-ming +2 位作者 WANG Yao-qi ZHOU Jing WANG Bao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2578-2591,共14页
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ... In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα. 展开更多
关键词 titanium alloy hot stamping SPRINGBACK FE modelling analytical model
下载PDF
FORMING PROCESS OF HOT-EXTRUDED SiCw/6061Al COMPOSITES(Ⅰ) 被引量:3
15
作者 Zhang Wenlong, Cai Liuchun, Peng Huaxin, Wang Dezun and Yao Zhongkai School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第3期77-81,共5页
1INTRODUCTIONInrecentyears,moreandmorecontinuouslyordiscontinuouslyreinforcedmetalmatrixcomposites(MMCs)hav... 1INTRODUCTIONInrecentyears,moreandmorecontinuouslyordiscontinuouslyreinforcedmetalmatrixcomposites(MMCs)havebeenusedtomakest... 展开更多
关键词 SiC WHISKER aluminium MATRIX composite forming of hot EXTRUSION
下载PDF
Simulation and prediction of microstructure in hot forming of metals 被引量:2
16
作者 陈慧琴 张巧丽 +1 位作者 刘建生 郭会光 《中国有色金属学会会刊:英文版》 EI CSCD 2000年第4期465-468,共4页
The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a... The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a process by means of computer simulation, not by conventional trial and error method that is time consuming, expensive and does not always lead to optimum results. Models for microstructural simulation and prediction were set up according to the evolution of microstructure during hot forming and cooling processes. The expanding extrusion complex hot forming and cooling processes, as an example, were simulated. 展开更多
关键词 METAL hot forming MICROSTRUCTURAL simulation quality prediction
下载PDF
Integrated Modelling of Microstructure Evolution and Mechanical Properties Prediction for Q&P Hot Stamping Process of Ultra‑High Strength Steel 被引量:3
17
作者 Yang Chen Huizhen Zhang +2 位作者 Johnston Jackie Tang Xianhong Han Zhenshan Cui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期160-173,共14页
High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and... High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences. 展开更多
关键词 Q&P hot stamping Phase transformation model Microstructure evolution Product properties prediction
下载PDF
Deformation Behavior and Microstructure Evolution of AA2024-H18 Aluminum Alloy by Hot Forming with Synchronous Cooling Operations 被引量:2
18
作者 Chen Guoliang Chen Minghe +1 位作者 Wang Ning Sun Jiawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期504-513,共10页
Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mec... Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mechanical properties.However,the deformation behavior and microstructure evolution of the alloys during HFSC are complex and need to be studied due to the temperature and strain rate effects.Uniaxial tensile tests in a temperature range of 250—450℃and a strain rate range of 0.01—1 s-1 for AA2024-H18 aluminum alloy sheet are conducted with a Gleeble-3500 Thermal-Mechanical Simulation Tester.And based on metallography observation and analysis,AA2024-H18 aluminum alloy sheet in HSFC process exhibits hardening and dynamic recovery behaviors within the temperature range of 250—450 ℃.Strain rate shows different effects on ductility at different temperatures.Compared with traditional warm/hot forming methods,AA2024-H18 aluminum alloy achieves a better work-hardening result through HFSC operations,which promises an improved formability at elevated temperature and thus good mechanical properties of final part.After HSFC operations,the microstructure of the specimens is composed of elongated static recrystallization grain. 展开更多
关键词 hot forming with synchronous cooling AA2024 aluminum alloy deformation behavior microstructure evolution
下载PDF
Research status and progress of hot stamping 被引量:4
19
作者 Song Leifeng Ma Mingtu +3 位作者 Guo Yihui Fang Gang Liu Qiang Yao Zaiqi 《Engineering Sciences》 EI 2012年第6期51-61,共11页
In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are de... In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping. 展开更多
关键词 hot stamping PROCESS MATERIAL EQUIPMENT SIMULATION
下载PDF
Research on technological parameters of pressure forming with hot granule medium on AA7075 sheet 被引量:2
20
作者 董国疆 赵长财 +2 位作者 赵建培 押媛媛 曹秒艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期765-777,共13页
Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ... Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process. 展开更多
关键词 granule medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部